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Introduction I: Motivation

DNA molecules can be packed incredibly
tightly in cell nuclei. For example, human
DNA can be 2 m long but must fit inside a
cell nucleus of diameter 10 µm. Similarly,
bacteriophage DNA is packed into a hard
capsid until it is injected into the host cell.
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Some DNA molecules (like mitochondrial DNA) have a natural ring structure, while
linear DNA can cyclise (the ends stick together) in the nucleus or after being released
from confinement.

The tight packing within a cell or capsid may result in a high level of tangling, with
lots of knots and/or links. Knotting rates of up to 95% have been observed for DNA
released from certain bacteriophages.1

The topology of DNA is important because knots/links have been observed to impede
biological processes like replication.

1Arsuaga et al, PNAS 99 (2002), 5373–5377.
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Introduction II: Self-avoiding walks & polygons

A self-avoiding walk (SAW) ω on a graph is a sequence (ω0, . . . , ωn) of distinct
vertices with consecutive vertices adjacent on the graph.

When the graph is infinite and has translational symmetry (i.e. a lattice), define SAWs
up to translation.

For a given lattice, cn is the number of SAWs of length n (n edges ⇐⇒ n + 1
vertices).

On Z2, {cn}n≥0 = 1, 4, 12, 36, 100, 284, . . . Known up to n = 79.
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Any SAW of length m + n can be split into two smaller SAWs of lengths m and n.
Thus the submultiplicative inequality

cm+n ≤ cmcn.

This can be used to show

Theorem (Hammersley 1957)

The limit

lim
n→∞

1

n
log cn = κ

exists and is equal to infn≥0
1
n

log cn.

κ is known as the connective constant of the lattice.

Corollary

cn = eo(n)eκn.
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κ is known exactly only for 2-dimensional honeycomb lattice. For the square Z2 and
cubic Z3 lattices,

κZ2 ≈ 0.970081147

κZ3 ≈ 1.54416097

The subexponential factors are believed to have a power law form:

cn ∼ Anγ−1eκn

where A and κ depend on the lattice, γ depends only on the dimension. In 2D, expect
that γ = 43/32, while in 3D γ ≈ 1.156957.
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Why use SAWs?

3D SAWs do a good job of modelling geometric properties of polymers in a good
solvent (e.g. mean squared end-to-end distance)

SAWs incorporate the excluded volume effect.
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A self-avoiding polygon (SAP) is a simple closed loop on the edges of the lattice:

A SAP of n edges can be associated with a SAW of n − 1 edges by selecting a vertex
and a direction. There are 2n ways to do this.

Let pn be the number of SAPs of length n. (Note that on any bipartite lattice like Z2

or Z3, pn = 0 if n is odd, so henceforth always assume n is even.) Then two polygons
of length m and n can be concatenated to give a polygon of length m + n (may have
to rotate the second one), so we have the supermultiplicative inequality

pm+n ≥
1

d − 1
pmpn.

So polygons also have an exponential growth rate.
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In fact polygons have the same growth rate as walks:

Theorem (Hammersley 1961)

The limit

lim
n→∞

1

n
log

(
pn

d − 1

)
= lim

n→∞

1

n
log pn

exists and is equal to κ, the connective constant of the lattice, where the limit is taken

through even values of n. Moreover κ = supn≥0
1
n

log
(

pn
d−1

)
.

Expect similar power law subexponential terms:

pn ∼ Bnα−3eκn

where B, κ depend on lattice and α depends on dimension. In 2D, expect α = 1/2,
while in 3D expect α ≈ 0.23721.
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In 3D SAPs can be knotted:

In fact, very long polygons are almost always knotted:

Theorem (Sumners & Whittington 1988)

All except exponentially few sufficiently long SAPs on the cubic lattice are knotted.

This is proved using a pattern theorem.
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Introduction III: Pattern theorems

A pattern is a (sub)walk which can occur as part of a larger SAW. A Kesten pattern is
one which can occur in (at least) three (possibly overlapping) places in a SAW.

Theorem (Kesten 1963)

Let P be a Kesten pattern, and let cn,P̄ be the number of SAWs of length n which do
not contain any occurrences of P. Then

lim sup
n→∞

1

n
log cn,P̄ < κ.
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Sketch of (a) proof:

Work on d-dimensional hypercubic lattice with coordinates (x1, . . . , xd ).

A SAW ω = (ω0, . . . , ωn) is a bridge if xd (ω0) < xd (ωi ) ≤ xd (ωn) for all
i = 1, . . . , n. Let bn be the number of bridges of length n.

Bridges can be freely concatenated without creating self-intersections. A bridge is
irreducible if it cannot be written as the concatenation of two (non-empty)
bridges. Let in be the number of irreducible bridges of length n.

Define the generating functions C(z) =
∑

n cnz
n, and likewise B(z) and I(z).

Then with inclusion and unfolding arguments it is straightforward to show

I(z) ≤ B(z) ≤ C(z) ≤ e2B(z) = e2I(z)/(1−I(z))

Likewise define CP̄(z),BP̄(z) and IP̄(z). The same inequalities hold (unless P
can be formed at the concatenation of two irreducible bridges... then more care
must be taken)
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Sketch of (a) proof (ct’d):

C(z) has a dominant singularity at z = zc = e−κ, and cm+n ≤ cmcn implies that
C(z) diverges at least as strongly as a simple pole as z → zc . Hence B(z) also
diverges as z → zc .

Since B(z) = I(z)/(1− I(z)), we have I(zc ) = 1.

But IP̄(zc ) < 1, so the dominant singularity for BP̄(z) and CP̄(z) must be greater
than zc .

So the growth rate for walks which do not contain P must be smaller than that
of all walks!

In fact a stronger result holds:

Theorem (Kesten 1963)

Let P be a Kesten pattern, and let cn,P̄(≤k) be the number of SAWs of length n
which contain at most k occurrences of P. Then there exists an ε > 0 such that

lim sup
n→∞

1

n
log cn,P̄(εn) < κ.

Both results can easily be extended from SAWs to SAPs.
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Whittington and Sumners show that unknots are exponentially rare by letting P be a
tight trefoil pattern:

If this pattern occurs anywhere in a polygon, the polygon cannot be the unknot.



Introduction Polygons in tubes Random sampling

Conjectures

Let pKn be the number of SAPs in Z3 of length n and knot type K , and let un = p01
n .

Two unknots can be concatenated to give a bigger unknot, so

um+n ≥
1

2
umun.

(Not true for any other knot type!)

⇒ Unknots have connective constant κ0 < κ.

Can concatenate unknot with knot type K to get bigger knot of type K , so

lim inf
n→∞

1

n
log pKn ≥ κ0.

Generally believed that

Conjecture

lim
n→∞

1

n
log pKn = κ0

for all K.

Idea: expect a very long knot of type K to “look” like an unknot except for a small K
component somewhere.
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Then expect
pKn ∼ AKn

γK−1eκ0n

for some constants AK and γK .

Say K has P(K) prime knot components. (With P(01) = 0.) Generally believed that

Conjecture

γK = γ01 + P(K). (1)

Idea: a long knot of type K should “look” like an unknot except for the P(K) small
prime components, and there are ≈ nP(K) ways to “insert” them.

We will look at polygons in a subset of Z3 in order to (hopefully) prove results which
are difficult on the whole lattice.
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Polygons in lattice tubes

Let TL,M ≡ T be an L×M semi-infinite tube of Z3:

T = {(x , y , z) : x ≥ 0, 0 ≤ y ≤ L, 0 ≤ z ≤ M} .

(Assume L ≥ M.)

Let PT be the set of SAPs confined within T, counted up to translation in the x
direction.

z

x

y

Let pT,n be the number of polygons in PT of length n.
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Then it’s possible to concatenate two polygons in T of lengths m and n by adding a
constant number of steps:

So
pT,m+n+c ≥ pT,mpT,n ⇒ pT,m+n−c ≥ pT,m−cpT,n−c .

Theorem (Soteros & Whittington 1989)

The limit

κT = lim
n→∞

1

n
log pT,n

exists.

Note: Unlike in Z2 or Z3, SAWs and SAPs in the tube have different growth rates. For
now we will not consider SAWs in T.
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Transfer matrices

In fact we can do better:

Theorem (Soteros 1998)

There exists a constant αT such that

pT,n = αTe
κTn (1 + O(1/n)) .

This and other results are proved with transfer matrices:

A (1-)block is the portion of a polygon between x = j and x = j + 1 for some
j ∈ Z + 1/2. A starting block is the first non-empty block, and a finishing block is the
last non-empty block. Distinguish blocks not only by their edges and vertices, but also
by how the incoming edges on the left are paired up.
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Let GT(z) be the matrix with terms

gij =

{
z#edges in j if block j can follow block i

0 otherwise.

Let AT(z) be the vector with

aj =
∑

starting block i
can precede block j

z#edges in i

Let BT(z) be the vector with

bi =
∑

finishing block j
can follow block i

z#edges in j

Then the generating function FT(z) for polygons in T with z conjugate to length is
(for polygons of span ≥ 2)

FT(z) = AT(z).(I− GT(z))−1.BT(z)

Since polygons can be concatenated, GT is irreducible, and since there are blocks
which can follow themselves, GT is primitive (aperiodic). The dominant singularity of
FT(z) is zT = e−κT = the value of z which makes the dominant eigenvalue of GT(z)
equal to 1.
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Knots in tubes

Theorem (Soteros 1998)

For any L×M tube T with L ≥ 2, M ≥ 1 the probability of a random n-step polygon
in T being knotted approaches 1 as n→∞.

(Knots cannot occur in the 1× 1 tube.)

This also follows from a pattern theorem. Generalise G,A and B so that their entries
correspond to k-blocks: segments of a polygon between x = j and x = j + k for some
j ∈ Z + 1/2. Then (if k is large enough) some k-patterns guarantee knotting:

Theorem (Schaefer 1974)

The dominant eigenvalue of a non-negative irreducible matrix M is a strictly increasing
function of all of M’s elements.

So removing any knotted k-pattern results in a smaller growth rate!
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What can we say about the growth of polygons with a fixed knot type?

Theorem (Atapour, NRB, Eng, Ishihara, Shimokawa, Soteros & Vazquez 2017)

If K is a knot type that can occur in the 2× 1 tube T (a 2-bridge knot), then

lim
n→∞

1

n
log pKT,n = κT,0.

Lower bound already established.

Upper bound is proved by showing that a knot of type K can be unknotted by
inserting “untwisting” blocks:
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The number of insertions is bounded above by the crossing number c(K), giving

pKT,n ≤ aK

( n

c(K)

)
p01
T,n+bK

for some numbers aK and bK .

Moreover, if K = K1#K2# . . .#Kp , with each of the Ki having unknotting number 1,
then the number of insertions required is only p. In this case,

pKT,n ≤ aKn
puT,n+b(K).

This establishes the upper bound for (1) – can we get a lower bound?

This would require showing that there are (on average) at least const.×np ways to
convert an unknot to a knot of type K .
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A “pattern theorem” for unknots in T

A 2-string in a polygon π occurs at position x∗ ∈ Z + 1/2 if π intersects the plane
x = x∗ in only 2 places:

x

x

x

x
x

x

x

x

x
x

If π has a 2-string at x = x∗, then we can break it at that point, close up the two
halves to get π1 and π2, and know that the knot type K(π) is K(π1)#K(π2).

We can also insert a polygon π∗ in the middle, concatenate π1, π
∗, π2, and get

something of knot type K(π1)#K(π∗)#K(π2).

So if unknots have a lot (ie. O(n)) of 2-strings, there should be a lot (ie. O(np)) of
ways to insert the p knot components into an unknot to get a knot of type
K = K1# . . .#Kp .
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Lemma (Atapour, NRB, Eng, Ishihara, Shimokawa, Soteros & Vazquez 2017)

Let uT,n(j) be the number of unknots in T of length n with j 2-strings. Then

lim sup
n→∞

1

n
log uT,n(0) < κT,0.

The proof that almost all long polygons in T are knotted [Soteros 1998] followed easily
from the transfer matrix. But there is no finite transfer matrix for unknots. So we
need another way.

Can prove it numerically! Unknots in the 2× 1 tube can be concatenated with the
addition of 6 edges. So

uT,muT,n ≤ uT,m+n+6

and hence

κT,0 = lim
n→∞

1

n
log uT,n = sup

n

1

n
log uT,n−6.

There are 119,796,593 unknots of length 24 in T, so we know

κT,0 ≥ 0.620044.
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On the other hand, we can construct a transfer matrix for all polygons (not just
unknots) which excludes 2-strings.

Bounds on the dominant eigenvalue can be
calculated, which show that the growth rate for polygons with no 2-strings is at most
0.446287. So

lim sup
n→∞

1

n
log uT,n(0) ≤ 0.446287 < κT,0.

But we need something stronger:

Theorem (Atapour, NRB, Eng, Ishihara, Shimokawa, Soteros & Vazquez 2017)

There exists ε∗ > 0 such that

lim sup
n→∞

1

n
log uT,n(≤ε∗n) < κT,0.

To prove this, we show that an unknot with ≤ j 2-strings can be converted into one
with no 2-strings with the addition of a bounded number of edges. There are at most
n/2 2-strings in a polygon, so

uT,n(≤εn) ≤
εn∑
j=0

(n/2

j

)
uT,n+cj (0)

for a constant c.
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If ε < 1/4 then

uT,n(≤εn) ≤ (1 + εn)
(n/2

εn

)
uT,(1+cε)n(0).

Take logs, divide by n, apply Stirling’s approximation, then

lim sup
n→∞

uT,n(≤εn) ≤ −
1

2
log 2−

(
1

2
− ε
)

log

(
1

2
− ε
)
− ε log ε+ (1 + cε)× 0.446287

which is less than κT,0 for sufficiently small ε, and hence ε∗ exists.

Since unknots with fewer than ε∗n 2-strings are exponentially rare, we can take
(almost) any unknot of length n and turn it into a knot of type K = K1# . . .#Kp in

at least
(ε∗n

p

)
= O(np) ways. So for sufficiently large n there exist numbers

a(K), b(K), c(K), d(K) such that

c(K)npuT,n−d(K) ≤ pT,n(K) ≤ a(K)npuT,n+b(K)

and (1) follows.

Theorem (Atapour, NRB, Eng, Ishihara, Shimokawa, Soteros & Vazquez 2017)

If K = K1# . . .#Kp with all Kp being 2-bridge knots with unknotting number 1, then
in the 2× 1 tube T,

pT,n(K)

uT,n
∼ const.× np .
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Beyond the 2× 1 tube?

The enumeration argument used to show the density of 2-strings works the 3× 1 tube
too, but have to enumerate unknots to length 28. For larger tubes, would have to go
further ⇒ infeasible at present.

The “untwisting” algorithm has not been developed beyond the 2× 1 tube, but it may
work in some cases.
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Random sampling

Transfer matrices cannot be used to estimate κT,0 directly, and counting polygons of a
given knot type quickly becomes infeasible.

So instead we will try to use Monte Carlo methods. The transfer matrices can be used
to generate uniformly random polygons of a given span or length, built up one 1-block
at a time.

Roughly, the idea (adapted from [Alm & Janson 1990]) is that the correct transition
probability from 1-block i to 1-block j is

ef z
|j|
c
ξj (zc )

ξi (zc )
,

where |j | is the number of edges in j , zc = e−κT , and ξ(zc ) is the corresponding right
eigenvector.

(Some other stuff has to happen at the leftmost and rightmost blocks.)
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Some results

Knots turn out to be exceedingly rare in the 2× 1 tube ⇒ focus on the 3× 1 tube.

Figure: Probably of unknot in the 3 × 1 tube.

So κT,0 ≈ κT − 1.204× 10−7. In Z3 the difference has been estimated to be
≈ 4.15× 10−6 [Whittington & Janse van Rensburg 1992].
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Figure: Probably of trefoil in the 3 × 1 tube.
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Figure: Straight line fit to log-log plot +1.204 × 10−7n.
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Hamiltonian polygons

Knots in 3× 1 are still very very rare!

We see a lot more knots if we instead only focus
on Hamiltonian polygons: polygons which visit every box in an L×M × S box.

All of the theorems proved so far work for these too (in fact some are easier).
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Figure: Probably of Hamiltonian unknot in the 3 × 1 tube.

So here κH
T,0 ≈ κ

H
T − 8.923× 10−5. Taking a log-log plot and subtracting the

exponential term just gives noise, suggesting that γ0 = 0 in T.
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Figure: log-log plot +8.923 × 10−5n.

So here κH
T,0 ≈ κ

H
T − 8.923× 10−5. Taking a log-log plot and subtracting the

exponential term just gives noise, suggesting that γ0 = 0 in T.
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Figure: Probably of trefoil in the 3 × 1 tube.
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Figure: Straight line fit to log-log plot +8.923 × 10−5n.
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Figure: Probably of figure-eight in the 3 × 1 tube.
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Figure: Straight line fit to log-log plot +8.923 × 10−5n.
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Figure: Probably of single-component knot in the 3 × 1 tube.
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Figure: Straight line fit to log-log plot +8.923 × 10−5n.
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Figure: Probably of two-component knot in the 3 × 1 tube.
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Figure: Straight line fit to log-log plot +8.923 × 10−5n.
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Figure: Probably of three-component knot in the 3 × 1 tube.
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Figure: Straight line fit to log-log plot +8.923 × 10−5n.
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Ongoing & future work

Investigate:

how knotting probability behaves for larger tube sizes

how large knot components tend to be

whether knot components are “local” (occupy a small part along the chain) or
“global”

incorporate stretching & compressing forces; nearest-neighbour interactions;
writhe

In cases where the transfer matrix is too big to be used, develop new method
(Markov chain?) for sampling Hamiltonian polygons
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NRB, J. Eng & C. Soteros, Polygons in restricted geometries subjected to infinite
forces. Journal of Physics A 49 (2016), 424002.

NRB, J. Eng & C. Soteros, Characterizing knotting properties of polymers in
nanochannels, in preparation.

M. Atapour, NRB, J. Eng, K. Ishihara, K. Shimokawa, C. Soteros & M. Vazquez,
Unknotting operations on 4-plat diagrams and the entanglement statistics of polygons
in a lattice tube, in preparation.

Thank you!



Introduction Polygons in tubes Random sampling

NRB, J. Eng & C. Soteros, Polygons in restricted geometries subjected to infinite
forces. Journal of Physics A 49 (2016), 424002.

NRB, J. Eng & C. Soteros, Characterizing knotting properties of polymers in
nanochannels, in preparation.

M. Atapour, NRB, J. Eng, K. Ishihara, K. Shimokawa, C. Soteros & M. Vazquez,
Unknotting operations on 4-plat diagrams and the entanglement statistics of polygons
in a lattice tube, in preparation.

Thank you!


	Introduction
	Polygons in lattice tubes
	Random sampling

