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Introduction I: Polymer adsorption

A polymer is a large molecule made of many repeated parts.

Polymers in solution interact with one another, themselves and their environment.

These interactions depend on solvent quality, temperature, pressure, etc.

Polymer adsorption is the interaction with a surface:

impenetrable

penetrable

and this interaction can be attractive or repulsive.
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At an impenetrable surface, sometimes observe a phase transition: as temperature is
decreased, polymers transition from a desorbed to an adsorbed state:

Want a mathematical model to help understand this behaviour.

Random walks?

Nice mathematically

Lots of existing theory

But don’t encapsulate the excluded volume effect

Want to forbid monomers from lying on top of one another.

⇒ Self-avoiding walks!
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Introduction II: Self-avoiding walks (reminder)

For a given lattice, cn is the number of n-step SAWs.
eg. square lattice: c0 = 1, c1 = 4, c2 = 12, c3 = 36, c4 = 100, . . .

The limit
κ = lim

n→∞
n−1 log cn

exists. κ is called the connective constant of the lattice.

cn = exp(κn + o(n))

In general, κ is also not known exactly (numerical estimates). Except for the honeycomb
lattice, where

µ = eκ =

√
2 +
√

2.
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Introduction III: The model
To model polymer adsorption, restrict SAWs to a half-space. Interactions occur when
walks visit the boundary. (Except the origin.)

Define c+
n (ν) to be number of n-step SAWs which visit boundary ν times.

Then associate a fugacity (Boltzmann weight) y with each visit. Define the partition
function

Z+
n (y) =

∑
ν

c+
n (ν)yν

Physically, y = exp(ε/kT ), where

ε is energy gain per contact (determined experimentally)

k is Boltzmann’s constant, 1.38× 10−23JK−1

T is absolute temperature
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When y is small (large T ), walks with few contacts dominate the partition function, but
when y is large (small T ), walks with lots of contacts dominate. So

small y ⇒ surface is repulsive

large y ⇒ surface is attractive

Like cn, can prove
κ(y) = lim

n→∞
n−1 logZ+

n (y)

exists. For y > 0, κ(y) is

convex in log y (⇒ continuous)

non-decreasing

By comparison with walks which never touch the surface, can show

κ(y) = κ for 0 ≤ y ≤ 1.

By comparison with the walk which never leaves the surface, can show

κ(y) ≥ log y r

where r = 1 for square/triangular lattice and r = 1/2 for honeycomb lattice.
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So there must be a critical point yc with

κ(y)

{
= κ if y ≤ yc

> κ if y > yc

µ

yyc

κ(y)

This is the location of the phase transition:

Tc =
ε

k log yc

In the limit of polymer length:

y < yc (T > Tc) ⇒ polymers are desorbed

y > yc (T < Tc) ⇒ polymers are adsorbed
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What does this really mean?

Put a Boltzmann distribution on the walks of length n by setting

P(γ) =
y c(γ)

Z+
n (y)

where c(γ) is the number of γ’s surface contacts.

Then the mean density of contacts for walks of length n is

1

n

∑
ν νc

+
n (ν)yν

Z+
n (y)

=
y

n

∂ logZ+
n (y)

∂y
.

As n→∞, this becomes

y
∂κ(y)

∂y

{
= 0 if y < yc

> 0 if y > yc .
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Define the bivariate generating function

C+(x , y) =
∑
n,ν

c+
n (ν)xnyν =

∑
n

Z+
n (y)xn.

Then if µ(y) = eκ(y), the radius of convergence of C+(x , y) for a given y is µ(y)−1.
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Honeycomb lattice: Connective constant

For the honeycomb lattice, µ =
√

2 +
√

2.

Conjectured by Nienhuis in 1982, using methods from statistical physics (O(n) loop
model, Coulomb gas).

Proof announced in 2010 by Duminil-Copin and Smirnov. They use ideas in discrete
holomorphicity.

Convenience: SAWs start and end at mid-edges, rather than vertices.
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Let a domain Ω = (VΩ,MΩ), where VΩ induces a connected graph on the lattice, and MΩ

is all the mid-edges adjacent to VΩ.

a

z

δΩ ⊆ MΩ is mid-edges on the boundary.

For a ∈ δΩ and z ∈ MΩ, define the observable

F (Ω, a, z ; x , σ) ≡ F (z) =
∑
γ:a→z

x |γ|e−iσw(γ)

where γ is a SAW from a to z , |γ| is the length and w(γ) is the winding angle:

w(γ) =
π

3
(#left turns−#right turns)
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Theorem. (Smirnov) Let v ∈ VΩ and p, q, r ∈ MΩ adjacent to v . Then if

x = x∗ = 1/
√

2 +
√

2 and σ = 5/8,

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0.

Idea of proof. SAWs ending at p, q, r can be grouped into pairs or triples, then show
contribution of each group is 0.
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Special domain DT ,L:

aα α

ε

ε

ε

ε

βββββββ

ε

ε

ε

ε

2L

T

Sum Smirnov’s identity over all vertices → get an identity relating generating functions
of walks which start at a and end on the boundary:

1 = cos

(
3π

8

)
AT ,L(x∗) + cos

(π
4

)
ET ,L(x∗) + BT ,L(x∗)

Take appropriate limits in T , L→ can show

C(x)

{
<∞ if x < x∗

=∞ if x ≥ x∗.

So x∗ is the radius of convergence of C(x), and µ =
√

2 +
√

2.
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Honeycomb lattice: Critical surface fugacity

Two “natural” ways to orient the surface, and conjectures for yc for each:

yc = 1 +
√

2

(Batchelor & Yung, 1995)

yc =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2

(Batchelor, Bennett-Wood &
Owczarek, 1998)
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First orientation: Take same domain DT ,L, but put y weights on the β boundary:

aα α

ε

ε

ε

ε

βββββββ

ε

ε

ε

ε

2L

T

Why not the α boundary?

Just doesn’t work! Maybe because there are two different winding angles on α
boundary?

Same process:

1 = cos

(
3π

8

)
AT ,L(xc , y) + cos

(π
4

)
ET ,L(xc , y) +

y∗ − y

y(y∗ − 1)
BT ,L(xc , y)

where xc = 1/
√

2 +
√

2 and y∗ = 1 +
√

2.
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Take L→∞, get a strip

1 = cos

(
3π

8

)
AT (xc , y) + cos

(π
4

)
ET (xc , y) +

y∗ − y

y(y∗ − 1)
BT (xc , y).

In a strip, can

let walks end on the top, bottom, or anywhere

put y weights on top, bottom, or both

and the free energy κT (y) is always the same!

Also, in the limit strip → half-plane:

lim
T→∞

κT (y) = κ(y).
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To show that yc ≥ y∗ is fairly straightforward – need to adapt some results for walks in a
strip of the square lattice to the honeycomb lattice.

To show yc ≤ y∗, can factorise AT walks into pairs of BT walks:

T T − 1

AT (xc , y)− AT−1(xc , 1) ≤ xcBT−1(xc , 1)BT (xc , y).

Leads to inequality which is contradicted if yc > y∗.

However, this requires the assumption that

B(xc , 1) := lim
T→∞

BT (xc , 1) = 0.
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Proof of BT (xc) → 0

Bridges can be decomposed into irreducible bridges (iSABs):

Theorem. (Kesten) ∑
γ∈iSAB

x |γ|c = 1.

→ Probability distribution on iSABs: PiSAB(γ) = x
|γ|
c .

Define a discrete “time” renewal process by repeatedly sampling and concatenating
irreducible bridges. The interarrival “times” are the heights of the irreducible bridges.
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Then
BT (xc) = P(T is an arrival time).

The (discrete time) renewal theorem:

lim
T→∞

BT (xc) =
1

E(interarrival time)
=

1

EiSAB(H(γ))

where H(γ) is height.

So to show BT (xc)→ 0, we need to show EiSAB(H(γ)) =∞.
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To show EiSAB(H(γ)) =∞:

Assume otherwise (for contradiction)

Show EiSAB(W (γ)) <∞
Define a Stickbreak operation:

Show we can (w.p. 1) perform Stickbreak many times on long bridges.

Contradicts EiSAB(W (γ)) <∞
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Second orientation: Domain looks a little different:

ε

ε

ε

ε

ε

ε

αO αOαIαO αIαIαIαO

ββββββββββ

a
ζ+ζ−

Identity:

cOA AO
T ,L(xc , y) + c IAA

I
T ,L(xc , y) + cEET ,L(xc , y) + cPPT ,L(xc , y) + cB(y)BT ,L(xc , y) = cG

where cB(y) = 0 at

y = y† =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2
.

Rest of proof is mostly the same. Some symmetry arguments don’t work.
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Other work

How does κ(y) behave near yc? Order of the phase transition, crossover exponents...

Penetrable surfaces (conjectured yc = 1)

Imhomogeneous surfaces

Other geometries (quarter-plane, wedge)
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