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Self-avoiding walks & polygons

A self-avoiding walk (SAW) on a lattice is a walk which never visits the same vertex twice.

A self-avoiding polygon (SAP) is a simple closed loop on the lattice (ie. a SAW which returns to
its starting position).
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Self-avoiding walks & polygons

SAWs and SAPs were originally conceived in the 1940s as a model of long polymer chains like
polyethylene or DNA:

The self-avoidance constraint mimics the excluded volume of the monomers in the polymer.
Geometric properties like the radius of gyration of long polymers in dilute solution closely match
those of SAWs in 3D.
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Interacting polymers & phase transitions

Polymers experience various physical and chemical interactions with their environment, each
other, and themselves, including

surface adsorption, collapse and force-induced stretching.

These interactions may lead to phase transitions at a critical temperature or force.
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Adsorbing walks

Interactions can be modelled with SAWs by including an energy term.

e.g. For adsorption, put
the SAWs in a half-space of the lattice and associate an energy with each visit to the boundary:

Let cn(v) be the number of n-step SAWs which start on the boundary (counted up to translation)
and have v visits to the boundary (excluding the first vertex). So the above walk is counted by
c34(7).

The partition function for walks of length n is then

Cn(a) =
∑
v

cn(v)av

where a = eε/kT , ε is the energy of a single visit, k is Boltzmann’s constant and T is absolute
temperature.
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Adsorbing walks

Cn(a) is the normalisation for the Boltzmann distribution, where the probability of a walk with v
visits is proportional to av :

P(ω) =
av(ω)

Cn(a)

If a is large, walks with lots of visits are favoured, while if a is small, walks with few visits are
favoured. The expected number of visits is

〈v〉n = a
∂

∂a
log Cn(a).

Theorem (Hammersley, Torrie & Whittington 1982)

The limit

κ(a) = lim
n→∞

1

n
log Cn(a)

exists for all a ≥ 0. It is a non-decreasing log-convex function, and is thus continuous and
almost-everywhere differentiable.

This is the limiting free energy per step. The log-convexity implies that the limiting density of
visits is

δ(a) = lim
n→∞

1

n
〈v〉n = a

∂

∂a
κ(a).
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Adsorbing walks

Cn(1) just counts walks of length n in a half-space. So

κ(1) = lim
n→∞

1

n
log Cn(1) = κ

is the connective constant of the lattice.

Cn(0) counts walks with no visits to the surface. Those are half-space walks with an extra
up-step at the start, so Cn(0) = Cn−1(1), and hence

κ(0) = κ(1) = κ.

Since κ is non-decreasing, it must be constant for 0 ≤ a ≤ 1.

On the other hand, there is always a walk with n visits, so Cn(a) ≥ an, and

κ(a) = lim
n→∞

1

n
log Cn(a) ≥ lim

n→∞

1

n
log an = log a.

So there must be a value 1 ≤ ac ≤ eκ where κ(a) switches from constant to increasing, i.e. a
point where it is non-analytic. This corresponds to the critical temperature, at which the
adsorption phase transition occurs.

When a < ac , walks sampled from the Boltzmann distribution are desorbed and δ(a) = 0. When
a > ac , walks sampled from the Boltzmann distribution are adsorbed and δ(a) > 0.
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Adsorbing walks

κ is not known exactly for any lattice except the 2D honeycomb lattice, where

κ = log

√
2 +
√

2 [Duminil-Copin & Smirnov 2012].

Similarly ac is not known exactly for any lattice except the 2D honeycomb lattice. Depending on
which way the lattice is oriented, either

ac = 1 +
√

2
[NRB, Bousquet-Mélou, de Gier,

Duminil-Copin & Guttmann 2014]

or

ac =

√
2 +
√

2

1 +
√

2−
√

2 +
√

2
[NRB 2014].
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Pulled walks

Can do something similar for pulled walks.

Again take a polymer pinned to a surface at one end.
To represent a force acting on the other end, in a direction perpendicular to the surface, let
cn(v , h) be the number of half-space walks with v visits and endpoint height h.

h

So this walk is counted by c38(5, 5).

Now the two-variable partition function is

Cn(a, y) =
∑
v,h

cn(v , h)avyh

where y = ef /kT , and f is the force.
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Pulled walks

When a = 1, there are no interactions with the surface.

Theorem (Janse van Rensburg et al 2009)

The limit

λ(y) = lim
n→∞

1

n
log Cn(1, y)

exists for all a ≥ 0. It is a non-decreasing log-convex function, and is thus continuous and
almost-everywhere differentiable.

There is again a critical value 1 ≤ yc ≤ eκ where λ(y) switches from constant κ to an increasing
function of y . This time, however,

Theorem (NRB 2015)

The critical value
yc = 1

for all lattices in all dimensions ≥ 2.

When y ≤ 1, walks sampled from the Boltzmann distribution are free, and exhibit the same
scaling behaviour (e.g. radius of gyration) as walks in the bulk. When y > 1, walks become
ballistic, and move away from the surface at positive speed (i.e. height is O(n)).

Similar results when pulling at an angle to the surface.
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Adsorbing & pulled walks
The richer model is for general a and y , so that walks can be desorbed by pulling hard enough
from the surface.

Theorem (Janse van Rensburg & Whittington 2013)

The two-variable free energy

ψ(a, y) = lim
n→∞

1

n
log Cn(a, y)

exists for all a, y ≥ 0 and is equal to max{κ(a), λ(y)}. It is a log-convex function, and is thus
continuous and almost-everywhere differentiable.

This leads to the phase diagram

free

adsorbed

ballistic

ac
a

yc = 1

y

first-order transition

second-order transitions

Adsorbed-ballistic phase boundary is curve defined by κ(a) = λ(y).

Nicholas Beaton (University of Melbourne) Directed polymers 29-31 August, 2017 11 / 30



Adsorbing & pulled walks
The richer model is for general a and y , so that walks can be desorbed by pulling hard enough
from the surface.

Theorem (Janse van Rensburg & Whittington 2013)

The two-variable free energy

ψ(a, y) = lim
n→∞

1

n
log Cn(a, y)

exists for all a, y ≥ 0 and is equal to max{κ(a), λ(y)}. It is a log-convex function, and is thus
continuous and almost-everywhere differentiable.

This leads to the phase diagram

free

adsorbed

ballistic

ac
a

yc = 1

y

first-order transition

second-order transitions

Adsorbed-ballistic phase boundary is curve defined by κ(a) = λ(y).

Nicholas Beaton (University of Melbourne) Directed polymers 29-31 August, 2017 11 / 30



Adsorbing & pulled walks
The richer model is for general a and y , so that walks can be desorbed by pulling hard enough
from the surface.

Theorem (Janse van Rensburg & Whittington 2013)

The two-variable free energy

ψ(a, y) = lim
n→∞

1

n
log Cn(a, y)

exists for all a, y ≥ 0 and is equal to max{κ(a), λ(y)}. It is a log-convex function, and is thus
continuous and almost-everywhere differentiable.

This leads to the phase diagram

free

adsorbed

ballistic

ac
a

yc = 1

y

first-order transition

second-order transitions

Adsorbed-ballistic phase boundary is curve defined by κ(a) = λ(y).

Nicholas Beaton (University of Melbourne) Directed polymers 29-31 August, 2017 11 / 30



Adsorbing & pulled walks
The richer model is for general a and y , so that walks can be desorbed by pulling hard enough
from the surface.

Theorem (Janse van Rensburg & Whittington 2013)

The two-variable free energy

ψ(a, y) = lim
n→∞

1

n
log Cn(a, y)

exists for all a, y ≥ 0 and is equal to max{κ(a), λ(y)}. It is a log-convex function, and is thus
continuous and almost-everywhere differentiable.

This leads to the phase diagram

free

adsorbed

ballistic

ac
a

yc = 1

y

first-order transition

second-order transitions

Adsorbed-ballistic phase boundary is curve defined by κ(a) = λ(y).

Nicholas Beaton (University of Melbourne) Directed polymers 29-31 August, 2017 11 / 30



Adsorbing & pulled walks
The richer model is for general a and y , so that walks can be desorbed by pulling hard enough
from the surface.

Theorem (Janse van Rensburg & Whittington 2013)

The two-variable free energy

ψ(a, y) = lim
n→∞

1

n
log Cn(a, y)

exists for all a, y ≥ 0 and is equal to max{κ(a), λ(y)}. It is a log-convex function, and is thus
continuous and almost-everywhere differentiable.

This leads to the phase diagram

free

adsorbed

ballistic

ac
a

yc = 1

y

first-order transition

second-order transitions

Adsorbed-ballistic phase boundary is curve defined by κ(a) = λ(y).

Nicholas Beaton (University of Melbourne) Directed polymers 29-31 August, 2017 11 / 30



Adsorbing & pulled polygons

Self-avoiding polygons are a model of ring polymers. Can do all the same physics with polygons,
but not so obvious how to attach to the surface or apply force.

For simplicity we will fix one vertex o in the surface and apply the force at the opposite vertex.

h

o

Let p2n(v , h) be the number of half-space polygons of length 2n with one marked vertex o in the
surface, v + 2 total vertices in the surface, and the vertex opposite o of height h. e.g. The above
polygon is counted by p48(4, 5).

The partition function is

P2n(a, y) =
∑
v,h

p2n(v , h)avyh.
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Adsorbing & pulled polygons

Things now depend on the dimension: in 2D, at most half of the vertices can be in the surface,
but in ≥ 3 dimensions all of the vertices can be in the surface. In all dimensions the height is at
most half of the length.

Theorem (Soteros 1992)

The limiting free energy

κP(a) = lim
n→∞

1

2n
log P2n(a, 1)

exists for all a ≥ 0. It is a non-decreasing and log-convex function of a, and is thus continuous
and almost-everywhere differentiable. In ≥ 3 dimensions, κP(a) = κ(a). In 2 dimensions,
κP(a) ≤ κ(a).

As with walks there is an adsorption phase transition at a = aPc . In ≥ 3 dimensions, aPc = ac ,
while in 2 dimensions aPc ≥ ac . (Unknown if they are really the same.)

Theorem (Guttmann, Janse van Rensburg, Jensen & Whittington 2017)

The limiting free energy

λP(y) = lim
n→∞

1

2n
log P2n(1, y)

exists for all y > 0. In all dimensions, λP(y) = λ(
√
y).

So polygons also become ballistic at y = yP
c = yc = 1.
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Adsorbing & pulled polygons

In ≥ 3 dimensions polygons work the same way as walks:

Theorem (Guttmann, Janse van Rensburg, Jensen & Whittington 2017)

In ≥ 3 dimensions, the limiting free energy

ψP(a, y) = lim
n→∞

1

2n
log P2n(a, y)

exists for all a ≥ 0 and y > 0. Moreover, it is equal to max{κP(a), λP(y)}.

Corresponding phase diagram.

In 2 dimensions, much less is known.

Theorem (Guttmann, Janse van Rensburg, Jensen & Whittington 2017)

In 2 dimensions, when 0 ≤ a ≤ 1 or 0 < y ≤ 1, the limiting free energy

ψP(a, y) = lim
n→∞

1

2n
log P2n(a, y)

exists, and is equal to κP(a) or λP(y) respectively.
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Adsorbing & pulled polygons
For a, y > 1, there are only bounds:

lim inf
n→∞

1

2n
log P2n(a, y) ≥ max{κP(a), λP(y)}

and

lim sup
n→∞

1

2n
log P2n(a, y) ≤ max{κ(a), λP(y)}.

Numerical evidence (series analysis) suggests that the phase diagram is more complicated, with
possibly (at least) 4 phases:

free adsorbed

ballistic

mixed

aPc
a

yP
c = 1

y

But the series are not very long so this is only speculation...
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Solvable models

Solvable models often exhibit similar physics as the more general cases, but allow for exactly
analysis. The simplest solvable models use directed paths:

h

Let dn(v , h) be the number of directed paths starting at (0, 0) and ending at (n, h), staying in the
upper half-plane and with v + 1 vertices in the surface.

Define the partition function

Dn(a, y) =
∑
v,h

dn(v , h)avyh

and generating function

D(t; a, y) =
∑
n≥0

Dn(a, y)tn.
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Adsorbing & pulled directed paths

Then D(t; a, y) satisfies a simple functional equation:

D(t; a, y) = 1 + t(y + y)D(t; a, y) + t(a− 1)[y1]D(t; a, y)− tyD(t; a, 0)

where y = y−1.

This can be solved with the kernel method, giving

D(t; a, y) =
2(1− 2t2 +

√
1− 4t2)

(1− 2t2a +
√

1− 4t2)(1− 2ty +
√

1− 4t2)
.

The dominant singularity (i.e. the one closest to the origin) of D(t; a, y) (viewed as a function of
t) determines the asymptotic behaviour of Dn(a, y), which in turn determines the free energy.

When y = 1,

κD(a) =

{
log 2 if a ≤ 2

log a− 1
2

log(a− 1) if a > 2,

while if a = 1 then

λD(y) =

{
log 2 if y ≤ 1

log(y2 + 1)− log y if y > 1.

Then
ψD(a, y) = max{κD(a), λD(y)}.
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Adsorbing & pulled directed paths

The phase diagram matches that of SAWs, but here we can exactly locate the phase boundaries:

free

adsorbed

ballistic

ac = 2
a

yc = 1

y

first-order transition
along curve y2 = 1

a−1

second-order transitions
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Directed polygons

That worked well, so what about polygons?

The simplest model is staircase polygons:

Two directed paths, starting and ending at the same vertices but otherwise avoiding each other.
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Adsorbing & pulled staircase polygons

Focus on two cases:

the two ends fixed at the surface (grafted staircase polygons)

or the middle vertex on the bottom fixed at the surface (centred staircase polygons)

In both cases, count vertices in the surface as visits and apply the force at the middle vertex on
the top.
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Adsorbing & pulled staircase polygons

Let sG4n(v , h) (resp. sC4n(v , h)) be the number of grafted (resp. centred) staircase polygons of total
length 4n, with v vertices in the surface and middle vertex of height h.

Define partition functions in the usual way:

SG
4n(a, y) & SC

4n(a, y).

(Everything can be adapted to total length 4n + 2 as well.)

Can once again write down functional equations for the generating functions, but this time they
are too complicated to solve explicitly.

Fortunately, we have another way: can count pairs of nonintersecting paths directly.
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Grafted polygons via pairs of paths
Let rn,k,m(a) be the total weight of all non-intersecting pairs of paths which start at (0, 0)
(resp. (0, 2)) and end at (n,m) (resp. (n, k + 2)), with the bottom path accumulating a weights
on the surface:

m

k −m + 2

These are in bijection a single path in an octant of Z2:

m k
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Grafted polygons via pairs of paths

The rn,k,m(a) satisfy a recurrence, which can be solved with a Bethe ansatz. When a = 1,

rn,k,m(1) =
(k + 3)(m + 1)(k −m + 2)(k + m + 4)

4(n + 1)(n + 2)(n + 3)2

( n + 3
1
2

(n + k + 6)

)( n + 3
1
2

(n + m + 4)

)
.

Then for general a,

rn,k,m(a) = a
n∑

w=0

(a− 1)w
w∑

p=0

sn,k+2p,m+2w−2p(1).
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Grafted polygons via pairs of paths

Grafted polygons can then be formed by gluing together two pairs of paths with the same m and
k, multiplying by yk+2, and summing over m, k:

SG
4n(a, y) =

1

a

n−1∑
k=0

rn−1,k,0(1)2yk+2 +

n−1∑
k=0

k∑
m=1

rn−1,k,m(a)2yk+2.

The asymptotics can be computed by using Stirling’s approximation and replacing the sums with
integrals. The free energy turns out to be

ψG (a, y) =
1

2
κD(a) +

1

2
λD(
√
y).

i.e. The bottom path acts as an adsorbing directed path, and the top path acts like a pulled
directed path with half the force:

Impossible to desorb by pulling.
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Grafted polygons via pairs of paths

The phase diagram is simple:

free adsorbed

ballistic mixed

a

y

ac = 2

yc = 1

All phase transitions are second-order.
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Centred polygons via pairs of paths

A similar approach can be used for centred staircase polygons.

This time

ψC (a, y) =
1

2
λD(
√
y) +

1

2
max{λD(

√
y), κD(a)}.

Now pulling hard enough does induce desorption:

But the converse (adsorb strongly enough to overcome force) is still impossible.
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Centred polygons via pairs of paths

The phase diagram now resembles what the numerics suggest for SAPs:

free adsorbed

ballistic

mixed

a

y

ac = 2

yc = 1

y
=
a
−

1

Ballistic-mixed transition is first-order, all others are second-order.
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Generalisations

A more general model for staircase polygons requires only that there is at least one vertex in the
surface somewhere. In that case the free energy turns out to be the same as centred polygons.

A model which more closely resembles that of SAPs might be column-convex polygons:

But this may not be amenable to generating-function or Bethe ansatz methods.
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Restricting the lattice instead

Can instead induce directedness by restricting the walks/polygons to a narrow strip (2D) or tube
(3D):

The physics here is quite different though – there are no phase transitions in such geometry. But
we can do other things, e.g. measure the force that the walk/polygon exerts on the boundaries of
the strip, and how this changes if we add adsorption weights to the top and bottom.

Can also apply forces in the horizontal direction, causing the walks/polygons to become
space-filling (Hamiltonian):
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