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Introduction I: Some models in continuum percolation

Boolean model: introduced by [Gilbert 1961] (to model the transmission of radio waves)

One version: take a Poisson point process X in Rd with intensity λ. For each x ∈ X let ρx be
i.i.d. non-negative bounded random variables, and let Bx be the ball of radius ρx around x .

Let
C =

⋃
x∈X

Bx and V = Rd \ C
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Theorem [Menshikov 1986]

For d ≥ 2 and given distribution for the ρi : there exists a critical intensity 0 < λc <∞ such that
C contains an infinite component a.s. for λ > λc.

Theorem [Roy 1990]

For d = 2 and given distribution for the ρi : when λ > λc we have C containing an infinite
component while V does not, and when λ < λc we have V containing an infinite component
while C does not.

For d ≥ 3 it is expected that there is an ‘intermediate’ region (λ∗, λc) where both C and V
contain infinite components.
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Lilypond model: introduced by [Häggström & Meester 1997]

Take a Poisson point process X in Rd with intensity λ. At each point x ∈ X simultaneously place
a ball of radius 0, and let the radius of each ball grow linearly (with the same speed) until it hits
another ball.

This then defines an infinite random graph G , whose vertex set is X and where edge xy is present
if x and y ’s balls touch.
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Theorem [Häggström & Meester 1997]

The graph G a.s. has no infinite component.

(Note that by scale invariance the intensity λ and the rate of growth are irrelevant.)

Lemma [Häggström & Meester 1997]

The graph G is a.s. a forest.
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Line segment lilypond model: introduced by [Daley et al. 2016]

Take a Poisson point process X in R2 with intensity λ, and for each point x ∈ X choose an angle
θx ∈ [0, π) uniformly at random. For each x grow a line Lx in both directions θx and θx + π at
unit speed.

Model 1: Stop growing Lx when it collides with another line (at either end).

Model 2: Stop growing Lx when it collides with another line or another line collides with Lx .

(Image from [Daley et al. 2016])

This defines an infinite random graph G , with vertex set X and where vertices x , y are joined by
an edge if their line segments touch.
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Theorem [Daley et al. 2016]

For Model 2, the graph G a.s. has no infinite component.

Conjecture [Daley et al. 2016]

For Model 1, the graph G a.s. has no infinite component.

Note that again the intensity λ and rate of growth of the line segments are irrelevant.
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Anisotropic line segment lilypond model: introduced by [Hirsch 2016]

Take a Poisson point process X in R2 with intensity λ. For each x ∈ X , choose a direction
θx ∈ {0, π2 , π,

3π
2
} uniformly at random. From each x , grow a line segment Lx in direction θx

until it collides with another line.

(Figure from [Hirsch 2016])

This defines an infinite random graph G in the same manner as the previous models.
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Theorem [Hirsch 2016]

The graph G a.s. has no infinite component.
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Question: Is there a lattice version of these lilypond models, ie. with points in Zd instead of Rd?
Does such a system ever percolate?
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Introduction II: A quick percolation refresher

(Henceforth always assume d ≥ 2.)

Bond percolation: Let E be the set of adjacent pairs of vertices in Zd . Define e ∈ E to be open
with probability p and closed with probability 1− p. Let Y ⊂ E be the set of open pairs, and let
X be the set of points which are in an open pair. Define graph G to have vertex set X and edge
set Y .

Let θ(p) = P(origin is part of an infinite open cluster of G).

Theorem [Broadbent & Hammersley 1957; Harris 1960]

Define pbond
c to be

pbond
c = sup{p : θ(p) = 0}.

Then 0 < pbond
c < 1. G a.s. has an infinite component if p > pbond

c , and G a.s. has no infinite
component if p < pbond

c . When it exists, the infinite component is a.s. unique.

For d = 2 we have pbond
c = 1

2
[Kesten 1980]
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Site percolation: Each x ∈ Zd is open with probability p and closed with probability 1− p. Let X
be the set of open vertices. Define graph G to have vertex set X , with vertices x , y ∈ X joined by
an edge if |x − y | = 1.

Theorem

With θ defined as above, define psite
c to be

psite
c = sup{p : θ(p) = 0}.

Then 0 < psite
c < 1. G a.s. has an infinite component if p > psite

c , and G a.s. has no infinite
component if p < psite

c . When it exists, the infinite component is a.s. unique.

For d = 2 the best current estimate is psite
c = 0.59274605079210(2) [Jacobsen 2015]

Mixed percolation: Vertex set X is the same as in site percolation (with parameter p). But now
if x , y ∈ X are adjacent in Zd , add the edge xy with probability λ.

Let θ(λ, p) = P(origin is part of an infinite open cluster of G).

Theorem [Chayes & Schonmann 2000]

Define λmixed
c (p) to be

λmixed
c (p) = sup{λ : θ(λ, p) = 0}.

Then λmixed
c (p) = 1 for 0 ≤ p ≤ psite

c and λmixed
c (1) = pbond

c . On the interval [psite
c , 1], λmixed

c is
Lipschitz continuous and strictly decreasing.
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Feasible pairs
For p ∈ [0, 1] let each site x ∈ Zd be occupied with probability p. Let ω be the set of occupied
sites.

A pair of occupied sites x , y ∈ ω is feasible if

(i) x and y differ in exactly one of the d coordinates, and

(ii) there is no other occupied site on the straight line segment between x and y .

Let F (ω) be the set of feasible pairs, and let Fv (ω) be the set of feasible pairs containing site v .
If p > 0 then |Fv (ω)| = 2d a.s.
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).

Let S(ω) be the set of blue segments. A site or edge of Zd is then blue if it is part of a blue
segment.

p = 0.01

jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:
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declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).

Let S(ω) be the set of blue segments. A site or edge of Zd is then blue if it is part of a blue
segment.

p = 0.7

p = 0.01

jim

Nicholas Beaton Alignment percolation October 29, 2019 17 / 32



The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
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jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).
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jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).
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p = 0.4

p = 0.01

jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
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(once from each end).
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jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).

Let S(ω) be the set of blue segments. A site or edge of Zd is then blue if it is part of a blue
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p = 0.01

jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).

Let S(ω) be the set of blue segments. A site or edge of Zd is then blue if it is part of a blue
segment.
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p = 0.01

jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).

Let S(ω) be the set of blue segments. A site or edge of Zd is then blue if it is part of a blue
segment.

p = 0.05

p = 0.01

jim
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The one-choice model
With ω a realisation of site percolation with parameter p and F (ω) the set of feasible pairs, we
take a probability distribution on F (ω) as follows:

For each v ∈ ω, choose one of the 2d pairs in Fv (ω) uniformly at random (say {v ,w}), and
declare the line segment from v to w to be blue. A segment may be declared blue twice
(once from each end).

Let S(ω) be the set of blue segments. A site or edge of Zd is then blue if it is part of a blue
segment.

p = 0.01

jim
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Some easy facts
Any edge of Zd is blue with probability

λ := 1−
(

1− 1

2d

)2

.

The origin is incident on a blue edge with probability

p + (1− p)
(

1− (1− λ)d
)

(increasing in p)

The probability that edges (o, e1) and (o,−e1) are blue is

1− (1− λ)
(

1 +
p

d

)
and for edges (o, e1) and (0, e2) it is

λ2 − p(2d − 1)2

(2d)4

(both decreasing in p)

Note that restricting the d-dimensional model to the (d − k)-dimensional sublattice {0}k × Zd−k

does not result in the one-choice model on Zd−k .
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Main results

Theorem 1

For the one-choice model, there exist 0 < po-c
0 (d) ≤ po-c

1 (d) < 1 such that

(i) if p ∈ (0, po-c
0 (d)) there exists a.s. a unique infinite blue cluster;

(ii) if p ∈ (po-c
1 (d), 1] there exists a.s. no infinite blue cluster.

Conjecture 1

For the one-choice model,

(i) there exists po-c
c (d) ∈ (0, 1) such that for p ∈ (0, po-c

c (d)) there exists a.s. a unique infinite
blue cluster, and for p ∈ (po-c

c (d), 1] there exists a.s. no infinite blue cluster;

(ii) po-c
c (d) is strictly increasing with d ;

(iii) the probability θ(p) that the origin lies in an infinite blue cluster is non-increasing in p.

Our best numerical estimates are po-c
c (2) ≈ 0.505 and po-c

c (3) ≈ 0.862.
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Theorem 1 (ii) follows by coupling with a corrupted compass model [Hirsch et al. 2018].

This is a version of bond percolation, with edges made open as follows: for each site x ∈ Zd ,

with probability p, choose one of the 2d edges incident on x and declare it open

with probability 1− p, declare all of the 2d edges incident on x to be open

(an edge may be declared open twice)

p = 0.9

Theorem [Hirsch et al. 2018]

For the corrupted compass model, there exists a pcomp
c (d) ∈ (0, 1) such that the set of open edges

a.s. does not percolate for p ∈ (pcomp
c (d), 1].
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The one-choice model can then be coupled with the corrupted compass model: the underlying
site percolation sites ω generate one open edge in the direction of their blue segment, and all
other sites generate 2d open edges.

With B the set of blue edges and T the open edges, we have B ⊆ T , and hence B a.s. does not
percolate if p ∈ (pcomp

c (d), 1].

Will return to Theorem 1 (i) later...
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Outline

1 Introduction
I: Some models in continuum percolation
II: A quick percolation refresher

2 The one-choice model

3 The independent model
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.1) (p, λ) = (1, 0.3)
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pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.2)

(p, λ) = (1, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.3)

(p, λ) = (1, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.4)

(p, λ) = (1, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.45)

(p, λ) = (1, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.5)

(p, λ) = (1, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6)

(p, λ) = (1, 0.3)
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Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (1, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.9, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.8, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.7, 0.3)

Nicholas Beaton Alignment percolation October 29, 2019 23 / 32



The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.6, 0.3)

Nicholas Beaton Alignment percolation October 29, 2019 23 / 32



The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.5, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.45, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.4, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.3, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.2, 0.3)
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The independent model

Again start with ω a realisation of site percolation with parameter p, and F (ω) the set of feasible
pairs. We take a different distribution on F (ω):

For each pair {u, v} ∈ F (ω), make it blue with probability λ.

S(ω) is the set of blue segments. Sites and edges of Zd are declared blue as before.

(p, λ) = (0.8, 0.6) (p, λ) = (0.1, 0.3)
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Some easy facts

The probability that a given edge is blue is λ.

The probability that a given vertex is incident to a blue edge is

1− (1− λ)d + p
(

(1− λ)d − (1− λ)2d
)

(increasing in p)

For two distinct edges e and e′,

corr
(
1{e is blue}, 1{e′ is blue}

)
=

{
(1− p)k e and e′ are collinear

0 otherwise

where k ≥ 1 is the number of lattice sites between e and e′.

Note that restricting the d-dimensional model to the (d − k)-dimensional sublattice {0}k × Zd−k

does result in the independent model on Zd−k .
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Main results

Theorem 2

For the independent model with parameters (p, λ)

(i) if λ < p/(2d − 1) there is a.s. no infinite blue cluster;

(ii) there exists an absolute constant c > 0 such that, if λ > c log2(1/(1− p)), there exists a.s. a
unique infinite blue cluster;

(iii) for p > psite
c and λ > λmixed

c (p), there exists a.s. a unique infinite blue cluster.

Conjecture 2

For the independent model with parameters (p, λ), there exists λind
c (p, d) ∈ (0, 1) such that

(i) λind
c (·, d) is continuous and strictly increasing on (0, 1];

(ii) for p > 0 and λ < λind
c (p, d), there exists a.s. no infinite blue cluster;

(iii) for p > 0 and λ > λind
c (p, d), there exists a.s. a unique infinite blue cluster.
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Phase diagram

p

λ

1

1

A

BB

C

1/(2d− 1)

pbondc

psitec1−e−1/c

21

Region A: no percolation
(Theorem 2 (i))

Regions B1 and B2: percolates
(Theorem 2 (ii) and (iii))

Line C : percolates (trivial)

Dashed line: conjectured
λind

c (p, d)

Note that numerical calculations for c
are very big, so region B1 is actually
very small.
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Theorem 2 (iii) is straightforward: if we only consider blue segments of length 1, we get mixed
percolation with parameters (p, λ), which percolates a.s. for λ > λmixed

c (p). Including longer
segments does not decrease the probability of percolation.

For Theorem 2 (i), suppose o ∈ ω. Exploring along each blue segment touching o, the expected
number of new sites found is 2dλ/p. (Similar if o /∈ ω.)

Now explore from each of those sites (excluding the segment we followed to get there):

if a site was in ω, expected number of new sites found is

µ1 = (2d − 1)λ/p;

if a site was not in ω, expected number of new sites found is

µ2 = 2(d − 1)λ/p.

Then iterate. As we go on, expected numbers of new discoveries at each step will decrease.

Total size of the resulting cluster is (stochastically) bounded above by a two-type branching
process, with expected numbers of children µ1 and µ2. This process dies out a.s. if µ1, µ2 < 1,
ie. if λ < p/(2d − 1).
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Uniqueness of infinite cluster

This leaves Theorem 1 (i) and Theorem 2 (ii), ie. the a.s. existence and uniqueness of infinite
cluster for small p.

Uniqueness for the independent model requires

Theorem [Burton & Keane 1989, 1991]

Let E be the edges of Zd , and let µ be a translation-invariant probability measure on {0, 1}E.
Suppose

0 < µ(e is blue | Te) < 1 µ-a.s. for all e ∈ E

where Te is the σ-field generated by the state of every edge except e. (This is the “finite energy
property”.)

Then if there exists an infinite blue cluster it is a.s. unique.

Not hard to show that the independent model satisfies the finite energy property.

The one-choice model does not satisfy the f.e.p., and proving uniqueness is complicated...
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Existence of infinite cluster

This is proved for a generalisation of both the one-choice and independent models.

Let ω and F (ω) be as before, and let µ be a probability distribution on {0, 1}F (ω). Define
conditions

C1. if f1 and f2 are two site-disjoint feasible pairs, the events {f1 is blue} and {f2 is blue} are
independent;

C2. if f is a feasible pair, then there exists λ ∈ (0, 1) such that P(f is blue) = λ.

Both the one-choice and independent models satisfy C1 and C2. Moreover, restricting to the
2-dimensional sublattice {0}d−2 × Z2, they both still satisfy C1 and C2.

We show that for sufficiently small p, the set of blue edges arising from µ satisfying C1 and C2
percolates a.s. in Z2.
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General idea:

Partition Z2 into blocks of size 6r , where r →∞ as p ↘ 0.

Certain blocks will be called ‘good’ (to be defined). A block being good depends on what’s
in the block and in its immediate neighbours.

The set of good blocks dominates (stochastically) a 1-dependent site percolation process,
with density → 1 as r →∞.

If the good blocks percolate then so too do the blue edges.

A site percolation process is 1-dependent if the state of a site depends on its immediate
neighbours. It is known [Ligett et al. 1997] that there exists ρ ∈ (0, 1) such that a process
percolates a.s. for density > ρ.
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For a block to be good, two things must happen:

o oo

Setting (1− p)r = 1
2

, can show that there exist absolute constants c1, c2 > 0 such that

P(B is good) ≥ 1− 4e−c1λr − 4e−c2λr

Choose c > 0 so that 1− 4e−c1λr − 4e−c2λr > ρ when λr > c

⇒ λ > c log2(1/(1− p)).
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Open questions etc.

Conjectures 1 and 2 still unresolved.

The one-choice model is not exactly a ’lilypond’ model, since segments can cross. Can make it
more ‘lilypond-like’ by choosing a direction from each occupied vertex and growing a line one unit
at a time, stopping when lines collide.

This is dominated by the one-choice model, but does it percolate for any p? (Probably not...)

arXiv:1908.07203

Thank you for listening!
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Uniqueness of infinite cluster for one-choice model

Let N be the number of infinite clusters. Three main steps:

A. Show that N is a.s. constant: follows from the fact that the probability measure is ergodic,
and N is translation-invariant.

B. Show that P(N ∈ {0, 1,∞}) = 1: if N ≥ 2, find a finite box intersected by two infinite
clusters, and perform surgery to join them together.

C. Show that P(N =∞) = 0: if N ≥ 3, find a finite box intersected by three infinite clusters,
and perform surgery to join them together. This implies the existence of a trifurcation, but
there is a theorem by [Burton & Keane 1989] proving that this is impossible.
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