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Introduction I: SAWs

Walks on a lattice which cannot revisit vertices.

For a given lattice, cn is the number of n-step SAWs (up to translation). eg. Square
lattice:

c0 = 1, c1 = 4, c2 = 12, c3 = 36, c4 = 100, . . .

For regular lattices in d � 2, no known expression for cn. But we still know
something! Because log cn is a sub additive sequence,

cn = exp(n + o(n))

 is the connective constant, µ = e is the growth constant.
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In general,  and µ are not known exactly. Honeycomb lattice is special:

Theorem (Duminil-Copin and Smirnov 2012)

On the honeycomb (hexagonal) lattice, µ =
p

2 +
p
2.

For other lattices, have numerical estimates based on series data (eg. 70 terms for
square lattice)

µsquare ⇡ 2.63815853031 µtriangular ⇡ 4.150797226

Subexponential factors unproven, but

Conjecture (Nienhuis 1982)

cn ⇠ An��1µn

for A, µ, � constant. A and µ are lattice-dependent, � depends only on dimension. In
two dimensions, � = 43/32.

In high dimensions, can do a bit better:

Theorem (Hara and Slade 1992)

On the hypercubic lattice in five or more dimensions,

cn ⇠ Aµn.
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Also interested in the size and shape of SAWs. eg. let hR2
e in be the mean-squared

end-to-end distance of SAWs of length n.

Conjecture (Nienhuis 1982; Lawler, Schramm and Werner 2004)

hR2
e in ⇠ Cn2⌫

with C lattice-dependent and ⌫ dimension-dependent. In two dimensions, ⌫ = 3/4.

The exponents � and ⌫ are also connected to the scaling limit of SAWs:

Conjecture (Lawler, Schramm and Werner 2004)

Self-avoiding walks have a conformally invariant scaling limit, namely SLE8/3.
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The generating function for {cn} is

C(z) =
X

n�0

cnz
n

Then zc = 1/µ is the radius of convergence of C(z), and

C(z) ! 1 as z ! z�c .

Expect that C(z) is non-D-finite, ie. does not satisfy a linear ODE with polynomial
coe�cients.
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Previously solved models – Partially directed walks

There are lots of things we don’t know about SAWs! Instead, we can look at simpler
models.

Partially directed walks (on the square lattice) avoid stepping in a certain direction.

Easy to solve the generating function (construct column by column):

Theorem

The generating function of PDWs on the square lattice is

GPDW(z) =
1 + z

1� 2z � z2
= 1 + 3z + 7z2 + 17z3 + 41z4 + 99z5 + 239z6 + . . .

The number of PDWs of length n is asymptotically

cPDWn ⇠
2 +

p
2

2
p
2

(1 +
p
2)n.
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Prudent walks

These are walks which never take a step towards a vertex they have previously visited.
They always end on the boundary of their bounding box.

This provides a sub-classification: 1-sided must end on one chosen side (eg. east) of
box (= PDWs), 2-sided must end on one of two chosen sides (eg. north or east),
3-sided on one of three chosen sides, and 4-sided can end anywhere on box. 2- and
3-sided have been solved, using the kernel method (more later) and its variants.

Theorem (Duchi 2005)

The generating function of 2-sided prudent walks is

G2-pru(z) =
1

1� 2z � 2z2 + 2z3

0

@1 + z � z3 + z(1� z)

s
1� z4

1� 2z � z2

1

A .
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Theorem (Bousquet-Mélou 2010)

The generating function of 3-sided prudent walks is

G3-pru(z) = [big sum of algebraic functions]

G3-pru(z) is non-D-finite.

From these two results,

Corollary (Duchi 2005; Bousquet-Mélou 2010)

The numbers of 2-sided and 3-sided prudent walks of length n are asymptotically

c2-prun ⇠ a⌧n and c3-prun ⇠ b⌧n

where a, b, ⌧ are positive constants. In particular, ⌧ ⇡ 2.48 is a root of
2� 2⌧ � 2⌧2 + 2⌧3 = 0.

Numerical evidence also suggests that the number of 4-sided prudent walks has the
same asymptotic form as 2- and 3-sided.
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Weakly directed walks

These are walks which are partially directed between any two visits to the same
horizontal line.

They can be constructed by concatenating partially directed bridges.
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A self-avoiding bridge is a SAW whose starting point has (strictly) minimal
y -coordinate, and whose endpoint has (not strictly) maximal y -coordinate.

Bridges can be freely concatenated without creating intersections (unlike SAWs). Any
bridge can be decomposed into a sequence of irreducible bridges, which cannot be
decomposed any further. A row of the lattice is a split row of a bridge ! if ! crosses it
precisely once. Irreducible bridges have only one split row: 0  y  1.

Easy to show bridges have the same exponential growth rate as SAWs.
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Weakly directed walks are (except for funny stu↵ at the start and end) composed of a
sequence of irreducible partially directed bridges. (Any two visits to the same
horizontal line must occur in the same irreducible bridge.)

Theorem (Bacher and Bousquet-Mélou 2011)

The generating function of weakly directed walks is

GWDW(z) = [big sum of algebraic functions].

GWDW(z) is non-D-finite. The number of weakly directed walks of length n is
asymptotically

cWDW
n ⇠ c!n,

where c is a positive constant and ! ⇡ 2.54.

Unknown if ! is algebraic or not. Decimal expansion suggests no.
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To recap, the growth constant µ for SAWs on the square lattice is ⇡ 2.63815. These
solvable models have growth rates

partially directed walks: 1 +
p
2 ⇡ 2.414

2- and 3-sided prudent walks: ⌧ ⇡ 2.48

weakly directed walks: ! ⇡ 2.54.

Can get higher growth rates by computing the generating function In(z) of irreducible
bridges up to length n, and then taking

B(z) =
In(z)

1� In(z)
.

But it doesn’t seem fair to call this “solvable”, since it’s limited only by computing
power...
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Weakly prudent bridges – Definition

Say a SAW w is co-prudent if its reversal w̄ is prudent.

A bridge is weakly prudent if each of its irreducible components is prudent or
co-prudent. A weakly prudent bridge is k-sided if each of its irreducible components is
too. (So 1-sided weakly prudent bridge = weakly directed bridge.)
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This is not the same as “prudent between any two visits to a line” – an irreducible
bridge may satisfy that property without being prudent itself.

Our construction method, like that of Bacher and Bousquet-Mélou, depends on the
bridge decomposition, so it’s unclear if that model can be solved.
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Construction

A ramp is a bridge whose endpoint has (not strictly) maximal x-coordinate.

Using symmetry arguments (eg. prudent and co-prudent bridges have same generating
function) and inclusion-exclusion, can show that we need two new generating
functions:

2-sided (north and east) irreducible prudent ramps ! gf P(z)

irreducible partially directed (no west steps) ramps ! gf D(z)

Bacher and Bousquet-Mélou already calculated D.

For P, the irreducibility is what makes this complicated. Can calculate it directly, but
the resulting function is very complicated. Instead, there is another way:

Lemma

P(z) =
R(z)� R̃(z)

1 +R(z)

where

R is gf of 2-sided (north and east) prudent ramps

R̃ is gf of 2-sided (north and east) prudent ramps which
start with pair of steps north-west, and
have 1  y  2 as a split row
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Generating functions

E(z; u, v) ⌘ E(u, v) =
X

n,i,j

en,i,j z
nui v j

N(z; u, v) ⌘ N(u, v) =
X

n,i,j

nn,i,j z
nui v j

where en,i,j (resp. nn,i,j ) is the number of 2-sided (north and east) prudent walks of
length n which end on the east (resp. north) side of their bounding box, starting with
a north step and never returning to y = 0.

i is distance from endpoint to north-east corner of box

j is distance from endpoint to the line y = 1.

i

j

j

i

Then R(z) = E(z; 0, 1) = N(z; 0, 1).
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Lemma

The generating functions E and N satisfy the functional equations

✓
1�

zu

u � zv
�

z2u

v � zu

◆
E(u, v) = z �

z2v

u � zv
E(zv , v)

�
z2u

v � zu
E(u, zu) + zvN(z, v)

✓
1�

zuv

u � z
�

z2uv

1� zu

◆
N(u, v) =

z

1� zu
�

z2v

u � z
N(z, v) + zE(zv , v).

Construct walks according to last inflating step – last step which moved the north or
east side of the bounding box.
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These equations (and the ones for R̃, which are similar) can be solved with the
iterated kernel method. R and R̃ end up having the same asymptotic growth rate as
2-sided prudent walks (cf. Duchi and Bousquet-Mélou).

Lemma

The gf I(z) of irreducible weakly prudent bridges is

I(z) = 4P(z)� 2D(z)� z

An irreducible prudent or co-prudent bridge can take four possible forms: (north and
east) or (north and west), or the reversal of (south and east) or (south and west). All
these have the same gf.

But some bridges are both (north and east) prudent and (south and west) co-prudent!
These are partially directed bridges. Likewise for (north and west) prudent and (south
and east) co-prudent.

The bridge of a single step is still counted twice, so subtract z.

Theorem

The gf GWPB(z) of weakly prudent bridges is

GWPB(z) =
I(z)

1� I(z)
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Asymptotics

The dominant singularity of GWPB(z) is the smallest root of I(z) = 1. Can’t solve it
exactly, but have good numerical bounds:

zlower < zc < zupper

where

zlower = 0.3878717153483037620359730530634371937772541720608503957

0640936754499315178424994556331712759062537114395993918,

zupper = 0.3878717153483037620359730530634371937772541720608503957

0640936754499315178424994556331712759062537114661907434.

So zc is, correct to 101 digits,

zc ⇡ 0.387871715348303762035973053063437193777254172060850

39570640936754499315178424994556331712759062537114.

Corollary

The number of weakly prudent bridges of length n is asymptotically

cWPB
n ⇠ c⇣n,

where ⇣ = z�1
c ⇡ 2.57817201 and c is a positive constant.

zc and ⇣ are almost certainly not algebraic.
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The gf is almost certainly non-D-finite. (Unable to prove!)

The mean-squared end-to-end distance is O(n2), like all other solved models (except
spiral walks) but unlike SAWs.
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Introduction II: Polymer adsorption - SAWs

A polymer is a large molecule made of many repeated parts.

Polymers in solution interact with one another, themselves and their environment.

These interactions depend on solvent quality, temperature, pressure, etc.

Polymer adsorption is the interaction with a surface:
impenetrable
penetrable

and this interaction can be attractive or repulsive. At an impenetrable surface,
sometimes observe a phase transition: as temperature is decreased, polymers
transition from a desorbed to an adsorbed state:
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To model polymer adsorption, restrict SAWs to a half-space. Interactions occur when
walks visit the boundary. (A visit could be a vertex or an edge.)

Define c+n (⌫) to be number of n-step SAWs which visit boundary ⌫ times.

Then associate a fugacity (Boltzmann weight) y with each visit. Define the partition
function

Z+
n (y) =

X

⌫

c+n (⌫)y⌫

Physically, y = exp(✏/kT ), where

✏ is energy gain per contact (determined experimentally?)

k is Boltzmann’s constant, 1.38⇥ 10�23JK�1

T is absolute temperature
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When y is small (large T ), walks with few contacts dominate the partition function,
but when y is large (small T ), walks with lots of contacts dominate. So

small y ) surface is repulsive

large y ) surface is attractive

Like cn, can prove
Z+
n (y) = exp((y)n + o(n))

For y > 0, (y) is

convex in log y () continuous)

non-decreasing

By comparison with walks which never touch the surface, can show

(y) =  for 0  y  1.

By comparison with the walk which never leaves the surface, can show

(y) � log y

So there must be a critical point yc with

(y)

(
=  if y  yc

>  if y > yc
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µ

yyc

(y)

This is the location of the phase transition:

Tc =
✏

k log yc

In the limit of polymer length:

y < yc (T > Tc ) ) polymers are desorbed

y > yc (T < Tc ) ) polymers are adsorbed

Define the bivariate generating function

C+(t, y) =
X

n,⌫

c+n (⌫)tny⌫ =
X

n

Z+
n (y)tn.

Then if µ(y) = e(y), the radius of convergence of C+(x , y) for a given y is
tc (y) = µ(y)�1.
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What does this really mean?

Put a Boltzmann distribution on the walks of length n by setting

P(�) = yc(�)

Z+
n (y)

where c(�) is the number of �’s surface contacts.

Then the mean density of contacts for walks of length n is

1

n

P
⌫ ⌫c+n (⌫)y⌫

Z+
n (y)

=
y

n

@ logZ+
n (y)

@y
.

As n ! 1, this becomes

y
@(y)

@y

(
= 0 if y < yc

> 0 if y > yc .
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Since the general SAW model has not been solved, finding exact results (like the value
of yc ) is di�cult. The honeycomb lattice is special:

Theorem (NRB, Bousquet-Mélou, de Gier, Duminil-Copin and Guttmann 2013)

For the honeycomb lattice oriented with edges perpendicular to the surface,

yc = 1 +
p
2

Theorem (NRB 2013)

For the honeycomb lattice with edges oriented parallel to the surface,

yc =

s
2 +

p
2

1 +
p
2�

p
2 +

p
2

Methods for the honeycomb lattice can be used to compute estimates for other
lattices [NRB, Guttmann and Jensen 2012]:

Square lattice: yvertex
c ⇡ 1.77564, y edge

c ⇡ 2.040135

Triangular lattice: yvertex
c ⇡ 2.144181, y edge

c ⇡ 2.950026

Another strategy: subclasses of SAW for which the model is solvable.
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Previously solved models

Previously the subclasses of SAW which have been solved all have a directedness
constraint:

Dyck paths

Motzkin paths

Partially directed walks
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Adsorbing prudent walks

Prudent walks are (in general) not directed. We consider 2-sided prudent walks on the
square lattice above an impenetrable surface, and 1- and 2-sided walks on the
triangular lattice, with a weight associated with steps along the surface.

Note: 1-sided square walks are just PDWs, which are already solved. 3- and 4-sided
square walks are the same thing, as are 2- and 3-sided triangular walks. We are unable
to solve 3-sided square walks above a surface.

2-sided square walks and 2-sided triangular walks are non-directed – they can take
steps in all directions on the lattice.
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Construction - 2-sided square walks

Almost the same as 2-sided prudent ramps, but now we have surface interactions.
Construct two generating functions:

R(u, v) ⌘ R(z; u, v ; y) =
X

n,i,j,↵

Rn,i,j,↵z
nui v j y↵

T (u, v) ⌘ T (z; u, v ; y) =
X

n,i,j,↵

Tn,i,j,↵z
nui v j y↵

where Rn,i,j,↵ (resp. Tn,i,j,↵) is the number of n-step 2-sided prudent walks ending on
the right (resp. top) side of their bounding rectangle at a distance i from the NE
corner of the rectangle and a distance j from the surface, with ↵ steps along the
surface.

i

j

i

j
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Construct walks in the same way as before – look at last inflating step.

Lemma

The gfs T (u, v) and R(u, v) satisfy

L(u, v)T (u, v) =
1

1� zuy
�

z2v

u � z
T (z, v) + zR(zv , v)� z(1� y)R(zv , 0)

M(u, v)R(u, v) = 1 + zvT (z, v)�
z2v

u � zv
R(zv , v)�

z2u

v � zu
R(u, zu)

�
zu(1� y)

u � zv
R(u, 0) +

z2v(1� y)

u � zv
R(zv , 0)

where

L(u, v) ⌘ L(z; u, v) = 1�
zuv(1� z2)

(u � z)(1� zu)

M(u, v) ⌘ M(z; u, v) = 1�
zuv(1� z2)

(v � zu)(u � zv)

Similar equations hold for the gfs of 1- and 2-sided triangular prudent walks.

Solutions obtained in the same way, via the iterated kernel method.
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Free energy

Theorem

The dominant singularity of R(z; 1, 1; y) and T (z; 1, 1; y) is

zc (y) =

(
✓ ⇡ 0.403032 y  2

h(y) y > 2,

where ✓ is a root of 1� 2✓ � 2✓2 + 2✓3 = 0, and h(y) is a root of

1� y � y(1� y)h(y) + yh(y)2 + y(1� y)h(y)3 = 0.

So the free energy is (y) = � log zc (y):

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

The phase transition is first-order, as 0(y) is not continuous.
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Theorem

For both 1-sided and 2-sided triangular prudent walks, dominant singularity is

zc (y) =

8
<

:

p
17�3
4 ⇡ 0.281, 0  y  yc

y2�
p

y(�4+8y�4y2+y3)
2y(y�1) , y > yc

where yc = 7+
p
17

4 ⇡ 2.78.

So the free energy is (y) = � log zc (y):

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Again, a first-order phase transition. But why the same for both?
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Every inflating step raises the top of the bounding triangle ) as walks get longer and
longer, it gets harder to “turn the corner” and move between LHS and RHS. So as
walks get longer, they tend to get “stuck” as either 1-sided walks or reflections thereof.

Not the case for 2-sided square walks, where an inflating E step does not move the top
of the bounding box. Not so hard to turn the corner ) di↵erent free energy to PDWs.
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Order of phase transitions

However, there is another question. All the directed models (Dyck paths, Motzkin
paths, PDWs) have second-order phase transitions. And general SAWs are expected
(from simulations etc) to also have a second-order transition.

) Adsorption occurs smoothly.

So why do our models have first-order transitions?

For all the directed models, the endpoint of an n-step walk in the desorbed phase has
mean height O(n1/2) above the surface. So walks “drift” away from the surface slowly.

For general SAWs, expect this to be O(n⌫) = O(n3/4).

But for our models, the mean height of the endoint is O(n). So walks quickly move
away from the surface ) adsorption is harder and non-smooth.

What happens if we force the walks to end on the surface?
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Adsorbing loops

A loop (aka arch, excursion) is a SAW which starts and ends on the surface.

If our prudent walks have a first-order transition because they move away from the
surface quickly, then we might expect prudent loops to have second-order transitions.

Already have the generating functions ) just need to set v = 0 in the existing
functions.

Triangular loops (1- and 2-sided) do have a second-order transition. But 2-sided
square loops still have a first-order transition!
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Even if the endpoints are tied to the surface, a large part of the walk may be far away,
so adsorption could still be di�cult.

O(n)

Should look at the mean maximum height of loops. For square loops, already have the
catalytic variable u which tracks height. For triangular loops, need to include another
variable to track height. (Not the height of the bounding triangle!) Still solve the
same way.

We observe that triangular loops (1- and 2-sided) have mean maximum height
O(n1/2), while square loops have mean maximum height O(n). So the adsorption for
square loops should be non-smooth!
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Moreover, once they adsorb, 2-sided square walks and loops have the same free energy
as PDWs:

0.5 1.0 1.5 2.0

0.90

0.91

0.92

walks

loops

PDWs

In the desorbed phase, still relatively easy to “turn the corner” and become a
non-PDW, hence the free energies are di↵erent there. But after adsorption, turning
the corner incurs too great an energy loss, so prudent walks become “stuck” as PDWs.



Introduction I: SAWs Previously solved models Weakly prudent bridges Introduction II: Polymer adsorption Adsorbing prudent walks Conclusion

Conclusion and further work

Weakly prudent walks are solvable, with an exponential growth rate closer to that
of SAWs than previously solved models.

We have new solvable models of polymer adsorption, including models which are
non-directed. They undergo a first-order adsorption transition, unlike most other
exactly solved models. Square loops also have a first-order transition, while
triangular loops have second-order.

Can use vertex weights instead of edge weights. The solution follows similarly but
the dominant singularity is harder to determine.

Square lattice: unable to solve the full case, as it requires 3 catalytic variables.
Some sub-cases solvable.

Can add another fugacity corresponding to sti↵ness – the tendency of the walk to
continue in straight lines.

Inhomogeneous polymers/surfaces (eg. striped, random patterns).
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