Weakly prudent bridges 0000000 Self-avoiding polygons 00000

Solvable self-avoiding walk and polygon models with large growth rates

Nicholas Beaton Department of Mathematics and Statistics University of Saskatchewan, Saskatoon

Axel Bacher Laboratoire d'Informatique de Paris Nord Université Paris 13

3 June 2015

5th Biennial Canadian Discrete and Algorithmic Mathematics Conference University of Saskatchewan, Saskatoon

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Introduction			

Let c_n be the number of self-avoiding walks of length n on the square lattice \mathbb{Z}^2 .

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Introduction			

Let c_n be the number of self-avoiding walks of length n on the square lattice \mathbb{Z}^2 .

 c_n is known up to n = 79.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Introduction			

Let c_n be the number of self-avoiding walks of length n on the square lattice \mathbb{Z}^2 .

 c_n is known up to n = 79.

A very hard problem!

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Asymptotics			

We still know some things about c_n . Because any SAW of length m + n can be split into two smaller ones,

 $c_{m+n} \leq c_m c_n$.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Asymptotics			

We still know some things about c_n . Because any SAW of length m + n can be split into two smaller ones,

 $c_{m+n} \leq c_m c_n$.

Theorem (Hammersley 1957) The limit $\lim_{n \to \infty} c_n^{1/n} = \mu$ exists and is equal to $\inf_{n \ge 0} c_n^{1/n}$.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Asymptotics			

We still know some things about c_n . Because any SAW of length m + n can be split into two smaller ones,

 $c_{m+n} \leq c_m c_n$.

Theorem (Hammersley 1957) The limit $\lim_{n \to \infty} c_n^{1/n} = \mu$ exists and is equal to $\inf_{n \ge 0} c_n^{1/n}$.

That is, the rate of growth of c_n is exponential:

Corollary

$$c_n = e^{o(n)} \mu^n.$$

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Asymptotics			

The constant μ is called the growth constant (sometimes connective constant), and depends on the lattice in question. On the square lattice,

 $\mu\approx {\rm 2.63815853031}.$

It is not known exactly for any regular lattice in ≥ 2 dimensions, except the honeycomb (hexagonal) lattice, where $\mu = \sqrt{2 + \sqrt{2}}$ (Duminil-Copin & Smirnov 2012).

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Asymptotics			

The constant μ is called the growth constant (sometimes connective constant), and depends on the lattice in question. On the square lattice,

 $\mu \approx \textbf{2.63815853031}.$

It is not known exactly for any regular lattice in ≥ 2 dimensions, except the honeycomb (hexagonal) lattice, where $\mu = \sqrt{2 + \sqrt{2}}$ (Duminil-Copin & Smirnov 2012).

In low dimension the subexponential term is not known exactly, but it is widely expected to follow a power law.

Conjecture

In 2 dimensions,

$$c_n \sim An^{\gamma-1}\mu^n$$

The constant A is the amplitude and depends on the lattice, while the exponent γ should only depend on the dimension. In d = 2 there is good reason to expect $\gamma = 43/32$, while for $d \ge 5$ it is known that $\gamma = 1$.

Introduction

Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons 00000

Behaviour of the generating function

Define the generating function

$$C(z)=\sum_{n\geq 0}c_nz^n.$$

Introduction

Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons 00000

Behaviour of the generating function

Define the generating function

$$C(z)=\sum_{n\geq 0}c_nz^n.$$

Then $z_c = \mu^{-1}$ is the radius of convergence of C(z), and (in 2d) we should have

$$C(z) \sim A'(1-\mu z)^{-43/32}$$

for $z \sim z_c$ and some constant A'.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	••••••	000000	00000
Solvable subclass	es		

We don't have an expression for c_n or the generating function C(z).

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Solvable sul	oclasses		

We don't have an expression for c_n or the generating function C(z).

Instead, can look for subclasses of SAWs which are solvable. They may

- shed light on the overall SAW problem
- · lead to physical models for which more precise information can be obtained
- lead to new techniques for enumeration, analysis, etc.
- be interesting in their own right!

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
A simple example.	partially directed wal	ks	

The simplest classes are obtained by forbidding one or more step directions. eg. a NES-partially directed walk can step \uparrow, \rightarrow and \downarrow but not \leftarrow .

A simple example:	partially directed wal	ks	
0000	00000000	000000	00000
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons

The simplest classes are obtained by forbidding one or more step directions. eg. a NES-partially directed walk can step \uparrow, \rightarrow and \downarrow but not \leftarrow .

Easy to construct these recursively:

- $\bullet\,$ either a walk has no $\rightarrow\,$ steps, and so is empty or just $\uparrow\,$ steps or just $\downarrow\,$ steps; or
- a walk has a last → step, and can be decomposed uniquely into a shorter walk concatenated with → and then a (possibly empty) sequence of ↑ or ↓.

A simple example:	partially directed wal	ks	
0000	00000000	000000	00000
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons

The simplest classes are obtained by forbidding one or more step directions. eg. a NES-partially directed walk can step \uparrow, \rightarrow and \downarrow but not \leftarrow .

Easy to construct these recursively:

- $\bullet\,$ either a walk has no $\rightarrow\,$ steps, and so is empty or just $\uparrow\,$ steps or just $\downarrow\,$ steps; or
- a walk has a last → step, and can be decomposed uniquely into a shorter walk concatenated with → and then a (possibly empty) sequence of ↑ or ↓.

This can be written as an equation involving the generating function P(z):

$$P(z)=1+\frac{2z}{1-z}+z\left(1+\frac{2z}{1-z}\right)P(z).$$

Int	rodi	nct	IOT
	000	200	
_			
- 636	1010		
		_	

Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons 00000

A simple example: partially directed walks

So

$$P(z) = \frac{1+z}{1-2z-z^2}$$

= 1+3z+7z^2+17z^3+41z^4+99z^5+239z^6+...

	Solvable subclasses	Weakly prudent bridges	Self-a
0000	000000000	0000000	000
A simple example	e: partially directe	ed walks	

So

$$P(z) = \frac{1+z}{1-2z-z^2}$$

= 1 + 3z + 7z^2 + 17z^3 + 41z^4 + 99z^5 + 239z^6 + ...

and the number c_n^{PDW} of PDWs of length *n* is

$$c_{n}^{\text{PDW}} = \frac{\left(-2 + \sqrt{2}\right) \left(1 - \sqrt{2}\right)^{n} + \left(2 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{n}}{2\sqrt{2}} \\ \sim \frac{1}{2} \left(1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{n}.$$

0000	00000000	0000000	00000
A simple example:	partially directed	walks	

So

$$P(z) = \frac{1+z}{1-2z-z^2}$$

= 1 + 3z + 7z^2 + 17z^3 + 41z^4 + 99z^5 + 239z^6 + ...

and the number c_n^{PDW} of PDWs of length *n* is

$$c_{n}^{\text{PDW}} = \frac{\left(-2 + \sqrt{2}\right) \left(1 - \sqrt{2}\right)^{n} + \left(2 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{n}}{2\sqrt{2}} \\ \sim \frac{1}{2} \left(1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{n}.$$

So the growth rate here is $1 + \sqrt{2} \approx 2.4142$.

A simple exa	mple: partially directe	ed walks	
0000	000000000	0000000	00000
	Solvable subclasses	Weakly prudent bridges	Self-avoiding p

So

$$P(z) = \frac{1+z}{1-2z-z^2}$$

= 1+3z+7z^2+17z^3+41z^4+99z^5+239z^6+...

and the number c_n^{PDW} of PDWs of length *n* is

$$c_{n}^{\text{PDW}} = \frac{\left(-2 + \sqrt{2}\right) \left(1 - \sqrt{2}\right)^{n} + \left(2 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{n}}{2\sqrt{2}} \\ \sim \frac{1}{2} \left(1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{n}.$$

So the growth rate here is $1 + \sqrt{2} \approx 2.4142$.

Question: How close can we get to $\mu \approx$ 2.63815853031 with a solvable model?

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

		/			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	/	۱.			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

			~		
			-		

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

			,	1	

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

			١	1	

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

			/	
			-	

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			
	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
---------------	---------------------	------------------------	------------------------
0000	00000000	000000	00000
Prudent walks			

				-	

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

				Ì	1

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

				١	1

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

				١	1

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

				_	

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

			_	

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

/				

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

/				

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

1	1				

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

1				

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

1				

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	~				
	-				

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

)	1		

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

		~		

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

			~		

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

			~	

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

The end of a prudent walk always lies on the boundary of its bounding box, and this allows for a sub-classification:

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Prudent walks			

The end of a prudent walk always lies on the boundary of its bounding box, and this allows for a sub-classification:

- 1-sided: after each step, endpoint is on E side of box
- 2-sided: after each step, endpoint is on N or E sides
- 3-sided: after each step, endpoint is on N, E or W sides
- 4-sided: no restriction

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	00000000	000000	00000
Prudent walks			

The end of a prudent walk always lies on the boundary of its bounding box, and this allows for a sub-classification:

- 1-sided: after each step, endpoint is on E side of box
- 2-sided: after each step, endpoint is on N or E sides
- 3-sided: after each step, endpoint is on N, E or W sides
- 4-sided: no restriction

1-sided prudent SAWs are also PDWs. 2- and 3-sided have been solved (Duchi 2005, Bousquet-Mélou 2010), 4-sided remains unsolved.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Prudent walks			

Theorem (Duchi 2005, Bousquet-Mélou 2010)

The numbers of 2- and 3-sided prudent walks are asymptotically

$$c_n^{2\text{-}pru} \sim A_2 \kappa^n$$
 and $c_n^{3\text{-}pru} \sim A_3 \kappa^n$

where $\kappa \approx 2.48119$ is the root of a cubic polynomial and A_2, A_3 are positive constants.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Prudent walks			

Theorem (Duchi 2005, Bousquet-Mélou 2010)

The numbers of 2- and 3-sided prudent walks are asymptotically

$$c_n^{2\text{-}pru} \sim A_2 \kappa^n$$
 and $c_n^{3\text{-}pru} \sim A_3 \kappa^n$

where $\kappa \approx 2.48119$ is the root of a cubic polynomial and A_2, A_3 are positive constants.

The generating function $C^{2-\text{pru}}(z)$ is algebraic (the root of a quadratic with coefficients in $\mathbb{Z}[z]$), and is solved with the kernel method.

The generating function $C^{3-\text{pru}}(z)$ is non-D-finite (cannot be written as the solution of a linear ODE with coefficients in $\mathbb{Z}[z]$), and is solved with the iterated kernel method.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Prudent walks			

Theorem (Duchi 2005, Bousquet-Mélou 2010)

The numbers of 2- and 3-sided prudent walks are asymptotically

$$c_n^{2\text{-}pru} \sim A_2 \kappa^n$$
 and $c_n^{3\text{-}pru} \sim A_3 \kappa^n$

where $\kappa \approx 2.48119$ is the root of a cubic polynomial and A_2, A_3 are positive constants.

The generating function $C^{2-\text{pru}}(z)$ is algebraic (the root of a quadratic with coefficients in $\mathbb{Z}[z]$), and is solved with the kernel method.

The generating function $C^{3-\text{pru}}(z)$ is non-D-finite (cannot be written as the solution of a linear ODE with coefficients in $\mathbb{Z}[z]$), and is solved with the iterated kernel method.

Conjecture (Dethridge & Guttmann 2008)

The number of 4-sided prudent walks is asymptotically

$$c_n^{4-pru} \sim A_4 \kappa^n$$

for some positive constant A_4 .

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Perimeter walks			

Can generalise prudent walks by maintaining the bounding box condition while relaxing the prudent condition, to get perimeter walks. Then 2-sided perimeter walks are solvable.

Theorem (B. 2012 (PhD Thesis))

The number of 2-sided perimeter walks is asymptotically

$$c_n^{2\text{-per}} \sim B_2 \tau^n$$

where $\tau \approx 2.50400$ is probably not algebraic and B_2 is a positive constant.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Perimeter walks			

Can generalise prudent walks by maintaining the bounding box condition while relaxing the prudent condition, to get perimeter walks. Then 2-sided perimeter walks are solvable.

Theorem (B. 2012 (PhD Thesis))

The number of 2-sided perimeter walks is asymptotically

$$c_n^{2\text{-per}} \sim B_2 \tau^n$$

where $\tau \approx 2.50400$ is probably not algebraic and B_2 is a positive constant.

The generating function $C^{2-\text{per}}(z)$ is almost certainly non-D-finite.

Self-avoiding bridges			
0000	0000000000	000000	00000
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons

To take things further, we need another definition.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	0000000000	0000000	00000
Self-avoiding bridges			

To take things further, we need another definition.

- A (2d) self-avoiding bridge is a SAW whose
 - first vertex has strictly minimal y-coordinate
 - final vertex has (not strictly) maximal y-coordinate

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
	0000000000		
Self-avoiding bridges			

To take things further, we need another definition.

- A (2d) self-avoiding bridge is a SAW whose
 - first vertex has strictly minimal y-coordinate
 - final vertex has (not strictly) maximal y-coordinate

Any two bridges can be concatenated to form a longer bridge.
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	0000000000	000000	00000
Self-avoiding bridg	ges		

To take things further, we need another definition.

- A (2d) self-avoiding bridge is a SAW whose
 - first vertex has strictly minimal y-coordinate
 - final vertex has (not strictly) maximal y-coordinate

Any two bridges can be concatenated to form a longer bridge.

 \Rightarrow Any bridge can be uniquely decomposed into a sequence of irreducible bridges.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	0000000000	000000	00000
Self-avoiding bridg	ges		

To take things further, we need another definition.

- A (2d) self-avoiding bridge is a SAW whose
 - first vertex has strictly minimal y-coordinate
 - final vertex has (not strictly) maximal y-coordinate

Any two bridges can be concatenated to form a longer bridge.

 \Rightarrow Any bridge can be uniquely decomposed into a sequence of irreducible bridges.

Note that we do not consider the empty walk to be a bridge.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	0000000000	0000000	00000
Self-avoiding bri	dges		

Since every bridge can be uniquely factorised as a sequence of irreducible bridges,

Self-avoiding bridg	zes		
0000	0000000000	000000	00000
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons

Since every bridge can be uniquely factorised as a sequence of irreducible bridges,

$$B(z) = \frac{I(z)}{1 - I(z)}$$

where B(z) is the generating function of bridges and I(z) is the generating function of irreducible bridges.

Self-avoiding	bridges		
0000	0000000000	0000000	00000
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons

Since every bridge can be uniquely factorised as a sequence of irreducible bridges,

$$B(z)=\frac{I(z)}{1-I(z)}$$

where B(z) is the generating function of bridges and I(z) is the generating function of irreducible bridges.

This idea can be exploited to get larger solvable classes: Define a class of walks (bridges) whose irreducible components satisfy some set of properties, which allow them to be solved.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	0000000000	000000	00000
Weakly directed	walks		

A weakly directed walk is a SAW which is partially directed between any two visits to a horizontal line.

Introduc	

Solvable subclasses

Weakly prudent bridges 0000000 Self-avoiding polygons

Weakly directed walks

A weakly directed walk is a SAW which is partially directed between any two visits to a horizontal line.

They are (essentially) self-avoiding bridges whose irreducible bridge components are partially directed.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	0000000000	0000000	00000
Weakly direc	ted walks		

A weakly directed walk is a SAW which is partially directed between any two visits to a horizontal line.

They are (essentially) self-avoiding bridges whose irreducible bridge components are partially directed.

If $I^{PDW}(z)$ is the generating functions of irreducible partially directed bridges, then

$$B^{WD}(z) = rac{I^{PDW}(z)}{1 - I^{PDW}(z)}.$$

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Weakly directed w	valks		

 $I^{\text{PDW}}(z)$ has been solved (Bacher & Bousquet-Mélou 2011).

Theorem (Bacher & Bousquet-Mélou 2011)

The number of weakly directed bridges is asymptotically

$$b_n^{WD} \sim C\sigma^n$$

where $\sigma \approx 2.5447$ is probably not algebraic. The generating function $B^{WD}(z)$ is non-D-finite.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Weakly directed w	valks		

 $I^{\text{PDW}}(z)$ has been solved (Bacher & Bousquet-Mélou 2011).

Theorem (Bacher & Bousquet-Mélou 2011)

The number of weakly directed bridges is asymptotically

$$b_n^{WD} \sim C\sigma^n$$

where $\sigma \approx 2.5447$ is probably not algebraic. The generating function $B^{WD}(z)$ is non-D-finite.

Can we do better?

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Weakly prudent b	ridges		

An *s*-sided weakly prudent bridge is a bridge whose irreducible bridge components are *s*-sided prudent or co-prudent (prudent in the reverse direction) walks, or reflections/rotations thereof.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Weakly prudent bi	ridges		

An *s*-sided weakly prudent bridge is a bridge whose irreducible bridge components are *s*-sided prudent or co-prudent (prudent in the reverse direction) walks, or reflections/rotations thereof.

1-sided are weakly directed.

We solve the 2-sided case.

3-sided and 4-sided are the same thing, but remain unsolved.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
		000000	
Functional e	quations		

Introduction		Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Functional equ	uations		

To construct positive prudent walks recursively, need two additional measurements:

- distance *i* from endpoint to NE corner of box
- distance j + 1 from endpoint to bottom of box

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Functional ed	quations		

To construct positive prudent walks recursively, need two additional measurements:

- distance *i* from endpoint to NE corner of box
- distance j + 1 from endpoint to bottom of box

Define $N^+(z; u, v)$ and $E^+(z; u, v)$ to be the generating functions for those positive walks ending on the N or E side, with u conjugate to i and v conjugate to j. The variables u and v are catalytic.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Functional e	quations		

To construct positive prudent walks recursively, need two additional measurements:

- distance *i* from endpoint to NE corner of box
- distance j + 1 from endpoint to bottom of box

Define $N^+(z; u, v)$ and $E^+(z; u, v)$ to be the generating functions for those positive walks ending on the N or E side, with *u* conjugate to *i* and *v* conjugate to *j*. The variables *u* and *v* are catalytic.

The bridges are those counted by N^+ .

Introduction 0000 Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons

Functional equations

Do something similar to PDWs (more complicated!) to get

$$\left(1 - \frac{zu}{u - zv} - \frac{z^2u}{v - zu}\right) E^+(z; u, v) = z - \frac{z^2v}{u - zv} E^+(z; zv, v) - \frac{z^2u}{v - zu} E^+(z; u, zu) + zvN^+(z; z, v) \left(1 - \frac{zuv}{u - z} - \frac{z^2uv}{1 - zu}\right) N^+(z; u, v) = \frac{z}{1 - zu} - \frac{z^2v}{u - z} N^+(z; z, v) + zE^+(z; zv, v)$$

Introd	luction
000	

Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons

Functional equations

Do something similar to PDWs (more complicated!) to get

$$\left(1 - \frac{zu}{u - zv} - \frac{z^2u}{v - zu}\right) E^+(z; u, v) = z - \frac{z^2v}{u - zv} E^+(z; zv, v) - \frac{z^2u}{v - zu} E^+(z; u, zu) + zvN^+(z; z, v) \left(1 - \frac{zuv}{u - z} - \frac{z^2uv}{1 - zu}\right) N^+(z; u, v) = \frac{z}{1 - zu} - \frac{z^2v}{u - z}N^+(z; z, v) + zE^+(z; zv, v)$$

This can be solved with the iterated kernel method. (Ugly!)

Introc	ILICTION
1110100	action
-()()()	<u></u>
000	

Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons

Functional equations

Do something similar to PDWs (more complicated!) to get

$$\left(1 - \frac{zu}{u - zv} - \frac{z^2u}{v - zu}\right) E^+(z; u, v) = z - \frac{z^2v}{u - zv} E^+(z; zv, v) - \frac{z^2u}{v - zu} E^+(z; u, zu) + zvN^+(z; z, v) \left(1 - \frac{zuv}{u - z} - \frac{z^2uv}{1 - zu}\right) N^+(z; u, v) = \frac{z}{1 - zu} - \frac{z^2v}{u - z}N^+(z; z, v) + zE^+(z; zv, v)$$

This can be solved with the iterated kernel method. (Ugly!)

The generating function of 2-sided prudent bridges is $N^+(z; 1, 1)$. We want to get at irreducible bridges. This is not so obvious – the irreducible components of a prudent bridge must be prudent, but if we concatenate two prudent bridges the result may not be prudent:

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
		0000000	
More functional e	quations		

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
		000000	
More functional e	quations		

Have to consider the subset of bridges which end at the north-east corner of their box.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
		000000	
More functional e	quations		

Have to consider the subset of bridges which end at the north-east corner of their box.

Then, define a slightly different factorisation...

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
		0000000	
More function	nal equations		

Have to consider the subset of bridges which end at the north-east corner of their box.

Then, define a slightly different factorisation...

Use the iterated kernel method on a slightly different functional equation...

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
		0000000	
More functi	onal equations		

Have to consider the subset of bridges which end at the north-east corner of their box.

Then, define a slightly different factorisation...

Use the iterated kernel method on a slightly different functional equation...

Then manipulate some generating functions...

Introduction 0000	Solvable subclasses 0000000000	Weakly prudent bridges	Self-avoiding polygons

...then combine with co-prudent, use inclusion-exclusion to account for those bridges which are both prudent and co-prudent (these are in fact partially directed). Likewise for reflections/rotations.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000

...then combine with co-prudent, use inclusion-exclusion to account for those bridges which are both prudent and co-prudent (these are in fact partially directed). Likewise for reflections/rotations.

The first few terms of the series for the irreducible objects are

 $I^{2-WP}(z) = z + 2z^2 + 2z^3 + 2z^4 + 2z^5 + 4z^6 + 10z^7 + 26z^8 + 56z^9 + 116z^{10} + O(z^{11})$

Introduction 0000	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons 00000

...then combine with co-prudent, use inclusion-exclusion to account for those bridges which are both prudent and co-prudent (these are in fact partially directed). Likewise for reflections/rotations.

The first few terms of the series for the irreducible objects are

$$I^{2-WP}(z) = z + 2z^2 + 2z^3 + 2z^4 + 2z^5 + 4z^6 + 10z^7 + 26z^8 + 56z^9 + 116z^{10} + O(z^{11})$$

Our generating function is then

$$B^{2-WP}(z) = rac{I^{2-WP}(z)}{1 - I^{2-WP}(z)}$$

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Growth constant			

Generating function is solved but complicated – easier to generate & analyse long series (6144 terms) using transfer matrix techniques.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Growth constant			

Generating function is solved but complicated – easier to generate & analyse long series (6144 terms) using transfer matrix techniques.

Theorem (Bacher & B. 2014)

The number of 2-sided weakly prudent bridges is asymptotically

 $b_n^{2-WP} \sim D\phi^n$

where $\phi pprox$ 2.57817 (known to 101 digits) is probably not algebraic.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Growth constant			

Generating function is solved but complicated – easier to generate & analyse long series (6144 terms) using transfer matrix techniques.

Theorem (Bacher & B. 2014)

The number of 2-sided weakly prudent bridges is asymptotically

 $b_n^{2\text{-WP}} \sim D\phi^n$

where $\phi \approx$ 2.57817 (known to 101 digits) is probably not algebraic.

Similarly to 3-sided prudent and weakly directed:

Conjecture (Bacher & B. 2014)

The generating function $B^{2-WP}(z)$ of weakly prudent bridges is not D-finite.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Further results	& future work		

Can generate random weakly prudent bridges with a critical Boltzmann sampler.

Introduction 0000 Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons 00000

Further results & future work

Can generate random weakly prudent bridges with a critical Boltzmann sampler.

Further generalisations? Solving walk models with more than 2 catalytic variables is often very difficult. (eg. the 3/4-sided prudent or 2-sided perimeter versions would require 3 catalytic variables).

		Weakly prudent bridges	Self-avoiding polygons
0000	000000000	0000000	00000
Self-avoiding	g polygons		

A (unrooted, undirected) self-avoiding polygon is a closed loop on the lattice.

It is known that these have the same growth rate as SAWs. If p_{2n} is the number of polygons of perimeter 2n, then

Introduction 0000	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
Concatenatin	ig polygons		

Polygons can be freely concatenated, like self-avoiding bridges. We identify the highest edge on the right side of one polygon with the lowest edge on the left side of the other, and delete them both:

Introduction 0000	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
Concatenatir	g polygons		

Polygons can be freely concatenated, like self-avoiding bridges. We identify the highest edge on the right side of one polygon with the lowest edge on the left side of the other, and delete them both:

<u> </u>	_					
1						

0000	0000000000	
Irreducible po	olygons	

Just as with bridges, we can then define an irreducible polygon to be one that cannot be written as the concatenation of two smaller polygons. Every polygon then has a unique factorization into irreducible components:

Irraducible r	advæane		
0000	000000000	000000	00000
Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons

Just as with bridges, we can then define an irreducible polygon to be one that cannot be written as the concatenation of two smaller polygons. Every polygon then has a unique factorization into irreducible components:

Introdu	

Solvable subclasses

Weakly prudent bridges

Self-avoiding polygons

Irreducible polygons

Just as with bridges, we can then define an irreducible polygon to be one that cannot be written as the concatenation of two smaller polygons. Every polygon then has a unique factorization into irreducible components:

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Irreducible polygo	ns		

To employ the same idea as with bridges, we then want to solve the largest possible class of irreducible polygons, and then concatenate them to generate something new.

	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
			00000
Irreducible po			

To employ the same idea as with bridges, we then want to solve the largest possible class of irreducible polygons, and then concatenate them to generate something new.

Note that the concatenation of two column-convex polygons is also column-convex. Most promising candidate is then column- and/or row-convex polygons, for which convexity is usually not preserved after concatenation.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
0000	000000000	000000	00000
Irreducible polygo	ns		

To employ the same idea as with bridges, we then want to solve the largest possible class of irreducible polygons, and then concatenate them to generate something new.

Note that the concatenation of two column-convex polygons is also column-convex. Most promising candidate is then column- and/or row-convex polygons, for which convexity is usually not preserved after concatenation.

Still a work in progress!

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
			00000
Reference			

Bacher & B., *Weakly prudent self-avoiding bridges*, Proceedings of FPSAC 2014 (Chicago, USA), 827-838.

Introduction	Solvable subclasses	Weakly prudent bridges	Self-avoiding polygons
			00000
Reference			

Bacher & B., *Weakly prudent self-avoiding bridges*, Proceedings of FPSAC 2014 (Chicago, USA), 827-838.

Thank you!