Pattern-avoiding permutations: enumeration, asymptotics and generating functions

Nicholas Beaton

School of Mathematics and Statistics, University of Melbourne, Australia

June 27, 2018

Outline

Introduction

2 Applications

3 Enumeration

Consecutive patterns

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

36

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

245

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

The problem is the 342 subsequence.

Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

The problem is the 342 subsequence. In fact if any permutation σ has a length-3 subsequence $\sigma_i, \sigma_j, \sigma_k$ with i < j < k and $\sigma_k < \sigma_i < \sigma_j$, it cannot be sorted using a stack.

Let $\tau \in S_m$ and $\sigma \in S_n$ be permutations with $m \leq n$. Then σ contains pattern τ if there is a subsequence $\sigma_{i_1}, \ldots, \sigma_{i_m}$ in the same relative order as τ . If σ does not contain pattern τ , then σ avoids τ , or is τ -avoiding.

Let $\tau \in S_m$ and $\sigma \in S_n$ be permutations with $m \leq n$. Then σ contains pattern τ if there is a subsequence $\sigma_{i_1}, \ldots, \sigma_{i_m}$ in the same relative order as τ . If σ does not contain pattern τ , then σ avoids τ , or is τ -avoiding.

So a permutation σ is stack-sortable only if σ avoids pattern 231.

Let $\tau \in S_m$ and $\sigma \in S_n$ be permutations with $m \leq n$. Then σ contains pattern τ if there is a subsequence $\sigma_{i_1}, \ldots, \sigma_{i_m}$ in the same relative order as τ . If σ does not contain pattern τ , then σ avoids τ , or is τ -avoiding.

So a permutation σ is stack-sortable only if σ avoids pattern 231.

In fact the converse is also true:

Theorem (Knuth 1968)

A permutation $\sigma \in S_n$ is stack-sortable if and only if σ avoids pattern 231.

Let $\tau \in S_m$ and $\sigma \in S_n$ be permutations with $m \leq n$. Then σ contains pattern τ if there is a subsequence $\sigma_{i_1}, \ldots, \sigma_{i_m}$ in the same relative order as τ . If σ does not contain pattern τ , then σ avoids τ , or is τ -avoiding.

So a permutation σ is stack-sortable only if σ avoids pattern 231.

In fact the converse is also true:

Theorem (Knuth 1968)

A permutation $\sigma \in S_n$ is stack-sortable if and only if σ avoids pattern 231.

Proof.

By induction. Trivially true if n = 0, 1, 2, so let $n \ge 3$ and say σ avoids 231.

Let *i* be such that $\sigma_i = n$. Then if j < i < k, must have $\sigma_i < \sigma_k$.

Now $\sigma' = \sigma_1 \dots \sigma_{i-1}$ and $\sigma'' = \sigma_{i+1} \dots \sigma_n$ are 231-avoiding. So sort σ' , then push $\sigma_i = n$ onto the stack, then sort σ'' , and pop σ_i from the stack.

Let $Av(\tau)$ be the set of permutations which avoid pattern τ , and $Av_n(\tau) = Av(\tau) \cap S_n$.

Let $Av(\tau)$ be the set of permutations which avoid pattern τ , and $Av_n(\tau) = Av(\tau) \cap S_n$.

• What is $a_n(\tau) = |\operatorname{Av}_n(\tau)|$? As $n \to \infty$?

Let $Av(\tau)$ be the set of permutations which avoid pattern τ , and $Av_n(\tau) = Av(\tau) \cap S_n$.

- What is $a_n(\tau) = |\operatorname{Av}_n(\tau)|$? As $n \to \infty$?
- Connections between $Av(\tau)$ and $Av(\tau')$ for $\tau \neq \tau'$?
Let $Av(\tau)$ be the set of permutations which avoid pattern τ , and $Av_n(\tau) = Av(\tau) \cap S_n$.

- What is $a_n(\tau) = |\operatorname{Av}_n(\tau)|$? As $n \to \infty$?
- Connections between Av(τ) and Av(τ') for $\tau \neq \tau'$?
- What does a random $\sigma \in Av(\tau)$ "look like"?

Applications

Theorem (Knuth 1973)

$$a_n(\tau) = C_n = \frac{1}{n+1} \binom{2n}{n}$$

for all $\tau \in S_3$.

Applications

Theorem (Knuth 1973)

$$a_n(\tau) = C_n = \frac{1}{n+1} \binom{2n}{n}$$

for all $\tau \in S_3$.

The Catalan numbers count many different objects in combinatorics, including Dyck paths, binary trees, plane trees and parallelogram polyominoes:

Theorem (Bóna 1997)

 $Av_n(1342)$ is in bijection with the set of rooted bicubic planar maps on 2(n + 1) vertices.

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

There is an infinite set \mathcal{T} such that σ is sortable by two infinite stacks in series iff $\sigma \in Av(\mathcal{T})$.

25

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

There is an infinite set \mathcal{T} such that σ is sortable by two infinite stacks in series iff $\sigma \in Av(\mathcal{T})$.

425

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

There is an infinite set \mathcal{T} such that σ is sortable by two infinite stacks in series iff $\sigma \in Av(\mathcal{T})$.

425

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

If \mathcal{T} is a list of permutations, then $\sigma \in Av(\mathcal{T})$ if σ avoids τ for all $\tau \in \mathcal{T}$.

Theorem (Murphy 2003)

There is an infinite set \mathcal{T} such that σ is sortable by two infinite stacks in series iff $\sigma \in Av(\mathcal{T})$.

Theorem (Elder 2006)

There a set \mathcal{T} of 20 permutations of size 5, 6, 7 and 8 such that σ is sortable by a stack of depth 2 and an infinite stack in series iff $\sigma \in Av(\mathcal{T})$.

Theorem (Lakshmibai & Sandhya 1990)

A Schubert variety is smooth iff its permutation $\sigma \in Av(1324, 2143)$.

Theorem (Lakshmibai & Sandhya 1990)

A Schubert variety is smooth iff its permutation $\sigma \in Av(1324, 2143)$.

Definition

Let $\tau = \tau_1 \dots \tau_m \in S_m$ be a permutation. Then σ avoids the barred pattern $\tau_1 \dots \overline{\tau_i} \dots \tau_m$ if it avoids $\tau_1 \dots \tau_{i-1} \tau_{i+1} \dots \tau_m$, except as part of an occurrence of τ .

Theorem (Lakshmibai & Sandhya 1990)

A Schubert variety is smooth iff its permutation $\sigma \in Av(1324, 2143)$.

Definition

Let $\tau = \tau_1 \dots \tau_m \in S_m$ be a permutation. Then σ avoids the barred pattern $\tau_1 \dots \overline{\tau_i} \dots \tau_m$ if it avoids $\tau_1 \dots \tau_{i-1} \tau_{i+1} \dots \tau_m$, except as part of an occurrence of τ .

Theorem (Bousquet-Mélou & Butler 2007)

A Schubert variety is locally factorial iff its permutation $\sigma \in Av(1324, 21\overline{3}54)$.

• Many other sorting problems: stacks in parallel, networks of stacks, queues, deques, ...

- Many other sorting problems: stacks in parallel, networks of stacks, queues, deques, ...
- Kazhdan-Lusztig polynomials

- Many other sorting problems: stacks in parallel, networks of stacks, queues, deques, ...
- Kazhdan-Lusztig polynomials
- Duplication-loss model in computational biology

- Many other sorting problems: stacks in parallel, networks of stacks, queues, deques, ...
- Kazhdan-Lusztig polynomials
- Duplication-loss model in computational biology
- Asymmetric simple exclusion model in statistical mechanics

Also provide an opportunity for development of Monte Carlo methods.

Also provide an opportunity for development of Monte Carlo methods.

Figure: Random permutation of size 500.

Also provide an opportunity for development of Monte Carlo methods.

Figure: Random 312-avoiding permutation of size 500. [Madras & Pehlivan, Random Structures and Algorithms 49 (2016), pp 599-631.]

Also provide an opportunity for development of Monte Carlo methods.

Figure: Random 4231-avoiding permutation of size 500. [Atapour & Madras, *Combinatorics, Probability and Computing* **23** (2014), pp 161–200.]

Also provide an opportunity for development of Monte Carlo methods.

Figure: Random 4132-avoiding permutation of size 300. [Madras & Yildirim, *Electronic Journal of Combinatorics* 24 (2017), #P4.13.]

Interested in finding $a_n(\mathcal{T})$ for some list of patterns \mathcal{T} , or generalisations thereof.

Interested in finding $a_n(\mathcal{T})$ for some list of patterns \mathcal{T} , or generalisations thereof.

In general this is a hard problem!

Interested in finding $a_n(\mathcal{T})$ for some list of patterns \mathcal{T} , or generalisations thereof.

In general this is a hard problem!

The pattern-matching problem for permutations τ and σ is to determine whether σ contains pattern τ .

Interested in finding $a_n(\mathcal{T})$ for some list of patterns \mathcal{T} , or generalisations thereof.

In general this is a hard problem!

The pattern-matching problem for permutations τ and σ is to determine whether σ contains pattern τ .

Theorem (Bose, Buss & Lubiw 1998)

For general τ and σ , the pattern matching problem is NP-complete.

Interested in finding $a_n(\mathcal{T})$ for some list of patterns \mathcal{T} , or generalisations thereof.

In general this is a hard problem!

The pattern-matching problem for permutations τ and σ is to determine whether σ contains pattern τ .

Theorem (Bose, Buss & Lubiw 1998)

For general τ and σ , the pattern matching problem is NP-complete.

But there are some special cases for which this is easier. For example,

Theorem (Chang & Wang 1992)

There is a polynomial time algorithm for the pattern-matching problem for Av(123...k).

Theorem (Bose, Buss & Lubiw 1998)

There is a polynomial time algorithm for the pattern-matching problem for Av(2413, 3142) (separable permutations).

Back to Catalan

Recall $a_n(231) = C_n = \frac{1}{n+1} {\binom{2n}{n}}$. Why?

Back to Catalan

Recall $a_n(231) = C_n = \frac{1}{n+1} {\binom{2n}{n}}$. Why?

Let $\sigma \in Av_n(231)$, and condition on the position of *n*. If $\sigma_i = n$, then $\sigma' = \sigma_1 \dots \sigma_{i-1} \in Av_{i-1}(231)$ and $\sigma'' = \sigma_{i+1} \dots \sigma_n$ (after subtracting i-1 from all values) is $\in Av_{n-i}(231)$.

Conversely, given any $\sigma' \in Av_{i-1}(231)$ and $\sigma'' \in Av_{n-i}(231)$, we can construct $\sigma \in Av_n(231)$ by shifting σ'' up by i-1 and concatenating $\sigma' n\sigma''$.

Summing over all possible values of *i*,

$$a_n(231) = \sum_{i=1}^n a_{i-1}(231)a_{n-i}(231)$$

with $a_0(231) = 1$.

This is the same recurrence satisfied by C_n .
Of course $|S_n| = n!$. How much of a difference does avoiding a pattern τ make?

Of course $|S_n| = n!$. How much of a difference does avoiding a pattern τ make?

A big difference if $\tau \in S_3$, since

$$a_n(au) = C_n \sim rac{4^n}{\sqrt{\pi n^3}} \ll n!$$

Of course $|S_n| = n!$. How much of a difference does avoiding a pattern τ make?

A big difference if $\tau \in S_3$, since

$$a_n(au) = C_n \sim rac{4^n}{\sqrt{\pi n^3}} \ll n!$$

In general:

Conjecture (Stanley & Wilf \approx 1990)

For every pattern τ , there exists a constant λ such that $a_n(\tau) < \lambda^n$ for all n.

Of course $|S_n| = n!$. How much of a difference does avoiding a pattern τ make?

A big difference if $\tau \in S_3$, since

$$a_n(au) = C_n \sim rac{4^n}{\sqrt{\pi n^3}} \ll n!$$

In general:

Theorem (Marcus & Tardos 2004)

For every pattern τ , there exists a constant λ such that $a_n(\tau) < \lambda^n$ for all n.

Proved by finding a recursive bound on pattern-avoiding matrices.

Of course $|S_n| = n!$. How much of a difference does avoiding a pattern τ make?

A big difference if $\tau \in S_3$, since

$$a_n(au) = C_n \sim rac{4^n}{\sqrt{\pi n^3}} \ll n!$$

In general:

Theorem (Marcus & Tardos 2004)

For every pattern τ , there exists a constant λ such that $a_n(\tau) < \lambda^n$ for all n.

Proved by finding a recursive bound on pattern-avoiding matrices.

Corollary (Arratia 1999)

For any τ , the limit

$$\lim_{n\to\infty}a_n(\tau)^{1/n}=\ell(\tau)$$

exists and is finite.

Of course $|S_n| = n!$. How much of a difference does avoiding a pattern τ make?

A big difference if $\tau \in S_3$, since

$$a_n(au) = C_n \sim rac{4^n}{\sqrt{\pi n^3}} \ll n!$$

In general:

Theorem (Marcus & Tardos 2004)

For every pattern τ , there exists a constant λ such that $a_n(\tau) < \lambda^n$ for all n.

Proved by finding a recursive bound on pattern-avoiding matrices.

Corollary (Arratia 1999)

For any τ , the limit

$$\lim_{n\to\infty}a_n(\tau)^{1/n}=\ell(\tau)$$

exists and is finite.

So $\ell(\tau) = 4$ if $\tau \in S_3$.

$$a_n(123...k) \sim c \frac{(k-1)^{2n}}{n^{k(k-2)/2}}$$

for some constant c, so that

$$\ell(123\ldots k)=(k-1)^2$$

$$a_n(123\ldots k)\sim crac{(k-1)^{2n}}{n^{k(k-2)/2}}$$

for some constant c, so that

$$\ell(123\ldots k)=(k-1)^2$$

Conjecture (Arratia 1999)

For all $\tau \in S_k$, $\ell(\tau) \leq (k-1)^2$.

$$a_n(123\ldots k) \sim c rac{(k-1)^{2n}}{n^{k(k-2)/2}}$$

for some constant c, so that

$$\ell(123\ldots k)=(k-1)^2$$

Conjecture (Arratia 1999)

For all $\tau \in S_k$, $\ell(\tau) \leq (k-1)^2$.

Disproved:

Theorem (Albert et al 2006)

 $\ell(4231) \geq 9.47$

$$a_n(123\ldots k)\sim crac{(k-1)^{2n}}{n^{k(k-2)/2}}$$

for some constant c, so that

$$\ell(123\ldots k)=(k-1)^2$$

Conjecture (Arratia 1999)

For all $\tau \in S_k$, $\ell(\tau) \leq (k-1)^2$.

Disproved:

Theorem (Albert et al 2006)

 $\ell(4231) \geq 9.47$

Some other results are known, but first we need a new definition...

Definition

Two patterns τ and τ' are Wilf equivalent if $a_n(\tau) = a_n(\tau')$ for all n.

Definition

Two patterns τ and τ' are Wilf equivalent if $a_n(\tau) = a_n(\tau')$ for all n.

So all patterns of length 3 are Wilf equivalent.

Definition

Two patterns τ and τ' are Wilf equivalent if $a_n(\tau) = a_n(\tau')$ for all n.

So all patterns of length 3 are Wilf equivalent.

For length 4 there are three Wilf equivalence classes, with representatives 1234 (12 patterns), 1342 (10) and 1324 (2).

Definition

Two patterns τ and τ' are Wilf equivalent if $a_n(\tau) = a_n(\tau')$ for all n.

So all patterns of length 3 are Wilf equivalent.

For length 4 there are three Wilf equivalence classes, with representatives 1234 (12 patterns), 1342 (10) and 1324 (2).

For length 5 there are 16 Wilf equivalence classes.

Theorem (Gessel 1990)

$$a_n(1234) = \frac{1}{(n+1)^2(n+2)} \sum_{k=0}^n \binom{2k}{k} \binom{n+1}{k+1} \binom{n+2}{k+1}$$

and

$$a_n(1234) \sim rac{81\sqrt{3}}{16\pi} \cdot rac{9^n}{n^4}, \qquad \text{so } \ell(1234) = 9.$$

Theorem (Gessel 1990)

$$a_n(1234) = \frac{1}{(n+1)^2(n+2)} \sum_{k=0}^n \binom{2k}{k} \binom{n+1}{k+1} \binom{n+2}{k+1}$$

and

$$a_n(1234) \sim \frac{81\sqrt{3}}{16\pi} \cdot \frac{9^n}{n^4}, \qquad \text{so } \ell(1234) = 9.$$

Theorem (Bóna 1997)

$$a_n(1342) = [complicated expression]$$

and

$$a_n(1342)\sim rac{64}{243\sqrt{\pi}}\cdot rac{8^n}{n^{5/2}}, \qquad {\it so}\; \ell(1342)=8.$$

Theorem (Gessel 1990)

$$a_n(1234) = \frac{1}{(n+1)^2(n+2)} \sum_{k=0}^n \binom{2k}{k} \binom{n+1}{k+1} \binom{n+2}{k+1}$$

and

$$a_n(1234) \sim \frac{81\sqrt{3}}{16\pi} \cdot \frac{9^n}{n^4}, \qquad \text{ so } \ell(1234) = 9.$$

Theorem (Bóna 1997)

$$a_n(1342) = [complicated expression]$$

and

$$a_n(1342)\sim rac{64}{243\sqrt{\pi}}\cdot rac{8^n}{n^{5/2}}, \qquad so \ \ell(1342)=8.$$

Before we get to Av(1324), another digression...

Definition

The ordinary generating function (OGF) for a sequence $(f_n)_{n>0}$ is

$$\mathsf{F}(z)=\sum_{n=0}^{\infty}f_nz^n.$$

Definition

The ordinary generating function (OGF) for a sequence $(f_n)_{n>0}$ is

$$F(z)=\sum_{n=0}^{\infty}f_nz^n.$$

F(z) has radius of convergence

$$\rho = \frac{1}{\limsup_{n \to \infty} |f_n|^{1/n}}.$$

Definition

The ordinary generating function (OGF) for a sequence $(f_n)_{n>0}$ is

$$F(z)=\sum_{n=0}^{\infty}f_nz^n.$$

F(z) has radius of convergence

$$\rho = \frac{1}{\limsup_{n \to \infty} |f_n|^{1/n}}$$

If $\ell = \lim_{n \to \infty} (f_n)^{1/n}$ exists then $\ell = 1/\rho$.

Definition

The ordinary generating function (OGF) for a sequence $(f_n)_{n>0}$ is

$$F(z)=\sum_{n=0}^{\infty}f_nz^n.$$

F(z) has radius of convergence

$$\rho = \frac{1}{\limsup_{n \to \infty} |f_n|^{1/n}}$$

If $\ell = \lim_{n \to \infty} (f_n)^{1/n}$ exists then $\ell = 1/\rho$.

If F is not entire, then F has a singularity (a point of non-analyticity) at some $z \in \mathbb{C}$ with $|z| = \rho$. This is the dominant singularity (or singularities).

If F has a single dominant singularity at $z = \rho$, and $F(z) \sim A(1 - z/\rho)^{\alpha}$ as $z \to \rho$ with A, α constant and $\alpha \notin \mathbb{N}$, then

$$f_n = \frac{An^{\alpha-1}\rho^{-n}}{\Gamma(\alpha)} \left(1 + O(n^{-1})\right)$$

If F has a single dominant singularity at $z = \rho$, and $F(z) \sim A(1 - z/\rho)^{\alpha}$ as $z \to \rho$ with A, α constant and $\alpha \notin \mathbb{N}$, then

$$f_n = \frac{An^{\alpha-1}\rho^{-n}}{\Gamma(\alpha)} \left(1 + O(n^{-1})\right)$$

Definition

A generating function F is algebraic if there is a non-trivial polynomial $P(x, y) \in \mathbb{Z}[x, y]$ such that P(z, F(z)) = 0.

F is *D*-finite if F(z) is the solution to a linear ODE with coefficients in $\mathbb{Z}[z]$.

Every algebraic function is also D-finite.

If F has a single dominant singularity at $z = \rho$, and $F(z) \sim A(1 - z/\rho)^{\alpha}$ as $z \to \rho$ with A, α constant and $\alpha \notin \mathbb{N}$, then

$$f_n = \frac{An^{\alpha-1}\rho^{-n}}{\Gamma(\alpha)} \left(1 + O(n^{-1})\right)$$

Definition

A generating function F is algebraic if there is a non-trivial polynomial $P(x, y) \in \mathbb{Z}[x, y]$ such that P(z, F(z)) = 0.

F is *D*-finite if F(z) is the solution to a linear ODE with coefficients in $\mathbb{Z}[z]$.

Every algebraic function is also D-finite.

D-finite functions are "nice" since their coefficients satisfy finite linear recurrences.

If F has a single dominant singularity at $z = \rho$, and $F(z) \sim A(1 - z/\rho)^{\alpha}$ as $z \to \rho$ with A, α constant and $\alpha \notin \mathbb{N}$, then

$$f_n = \frac{An^{\alpha-1}\rho^{-n}}{\Gamma(\alpha)} \left(1 + O(n^{-1})\right)$$

Definition

A generating function F is algebraic if there is a non-trivial polynomial $P(x, y) \in \mathbb{Z}[x, y]$ such that P(z, F(z)) = 0.

F is *D*-finite if F(z) is the solution to a linear ODE with coefficients in $\mathbb{Z}[z]$.

Every algebraic function is also D-finite.

D-finite functions are "nice" since their coefficients satisfy finite linear recurrences. For example, the Catalan OGF is algebraic:

$$C(z) = \sum_{n=0}^{\infty} C_n z^n = \frac{1-\sqrt{1-4z}}{2z}$$

and

$$(n+1)C_n - 2(2n-1)C_{n-1} = 0.$$

Let $A_{\tau}(z)$ be the OGF for $a_n(\tau)$.

Let $A_{\tau}(z)$ be the OGF for $a_n(\tau)$.

Conjecture (Noonan & Zeilberger 1996)

 $A_{\tau}(z)$ is D-finite for all τ .

 $A_{1342}(z)$ is algebraic:

$$\frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}$$

 $A_{1342}(z)$ is algebraic:

$$\frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}$$

Much less is known about $a_n(1324)$, but it doesn't look very nice.

 $A_{1342}(z)$ is algebraic:

$$\frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

Much less is known about $a_n(1324)$, but it doesn't look very nice.

Lemma (Bevan 2014; Bóna 2014)

 $9.81 \le \ell(1324) \le 13.73718$

 $A_{1342}(z)$ is algebraic:

$$\frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

Much less is known about $a_n(1324)$, but it doesn't look very nice.

Lemma (Bevan 2014; Bóna 2014)

 $9.81 \le \ell(1324) \le 13.73718$

Current best estimate [Conway, Guttmann & Zinn-Justin 2018]

 $\ell(1324) = 11.600 \pm 0.003.$

Based on series analysis up to $a_{50}(1324)$.

 $A_{1342}(z)$ is algebraic:

$$\frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

Much less is known about $a_n(1324)$, but it doesn't look very nice.

Lemma (Bevan 2014; Bóna 2014)

 $9.81 \le \ell(1324) \le 13.73718$

Current best estimate [Conway, Guttmann & Zinn-Justin 2018]

 $\ell(1324) = 11.600 \pm 0.003.$

Based on series analysis up to $a_{50}(1324)$.

The asymptotic behaviour appears to be more complicated too:

$$a_n(1324) \sim B \cdot \mu^n \cdot \mu_1^{\sqrt{n}} \cdot n^g$$

where $\mu = \ell$ (1324), $\mu_1 = 0.0400 \pm 0.0005$, $g = -1.1 \pm 0.1$ and B is unknown.

 $A_{1342}(z)$ is algebraic:

$$\frac{32z}{1+20z-8z^2-(1-8z)^{3/2}}.$$

Much less is known about $a_n(1324)$, but it doesn't look very nice.

Lemma (Bevan 2014; Bóna 2014)

 $9.81 \le \ell(1324) \le 13.73718$

Current best estimate [Conway, Guttmann & Zinn-Justin 2018]

 $\ell(1324) = 11.600 \pm 0.003.$

Based on series analysis up to $a_{50}(1324)$.

The asymptotic behaviour appears to be more complicated too:

$$a_n(1324) \sim B \cdot \mu^n \cdot \mu_1^{\sqrt{n}} \cdot n^g$$

where $\mu = \ell$ (1324), $\mu_1 = 0.0400 \pm 0.0005$, $g = -1.1 \pm 0.1$ and B is unknown.

This suggests that the generating function is not D-finite.

Nicholas Beaton (Melbourne)

Consecutive patterns

Let $c_n(\tau) = |\operatorname{Av}_n(\underline{\tau})|$.

Consecutive patterns

Let $c_n(\tau) = |\operatorname{Av}_n(\underline{\tau})|$.

The Stanley-Wilf-Marcus-Tardos theorem is definitely not true for consecutive patterns. But there is a related result:

Theorem (Elizalde 2006)

$$\lim_{n\to\infty}\left(\frac{c_n(\tau)}{n!}\right)^{1/n}=r(\tau)$$

exists for all τ . Moreover $0.7839 < r(\tau) < 1$ if τ has size > 3.

So consecutive pattern avoidance is a much weaker restriction than regular avoidance.

Consecutive patterns

Let $c_n(\tau) = |\operatorname{Av}_n(\underline{\tau})|$.

The Stanley-Wilf-Marcus-Tardos theorem is definitely not true for consecutive patterns. But there is a related result:

Theorem (Elizalde 2006)

$$\lim_{n\to\infty}\left(\frac{c_n(\tau)}{n!}\right)^{1/n}=r(\tau)$$

exists for all τ . Moreover $0.7839 < r(\tau) < 1$ if τ has size > 3.

So consecutive pattern avoidance is a much weaker restriction than regular avoidance.

Because of this, a new definition will be useful:

Definition

The exponential generating function (EGF) for a sequence $(f_n)_{n\geq 0}$ is

$$\hat{F}(z) = \sum_{n=0}^{\infty} \frac{f_n z^n}{n!}.$$
Consecutive patterns

Let $c_n(\tau) = |\operatorname{Av}_n(\underline{\tau})|$.

The Stanley-Wilf-Marcus-Tardos theorem is definitely not true for consecutive patterns. But there is a related result:

Theorem (Elizalde 2006)

$$\lim_{n\to\infty}\left(\frac{c_n(\tau)}{n!}\right)^{1/n}=r(\tau)$$

exists for all τ . Moreover $0.7839 < r(\tau) < 1$ if τ has size > 3.

So consecutive pattern avoidance is a much weaker restriction than regular avoidance.

Because of this, a new definition will be useful:

Definition

The exponential generating function (EGF) for a sequence $(f_n)_{n\geq 0}$ is

$$\hat{F}(z) = \sum_{n=0}^{\infty} \frac{f_n z^n}{n!}.$$

 $\hat{F}(z)$ is D-finite iff F(z) is D-finite.

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case for EGF itself, e.g. for $\sigma = 123$.)

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case for EGF itself, e.g. for $\sigma = 123$.)

Let $\hat{C}_{\tau}(z)$ be the EGF for sequence $c_n(\tau)$.

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case for EGF itself, e.g. for $\sigma = 123$.)

Let $\hat{C}_{\tau}(z)$ be the EGF for sequence $c_n(\tau)$.

Theorem (B., Conway & Guttmann 2018)

 $1/\hat{C}_{1423}(z)$ is not D-finite.

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case for EGF itself, e.g. for $\sigma = 123$.)

Let $\hat{C}_{\tau}(z)$ be the EGF for sequence $c_n(\tau)$.

Theorem (B., Conway & Guttmann 2018)

 $1/\hat{C}_{1423}(z)$ is not D-finite.

A useful fact:

Lemma

If f(z) is a D-finite function then f has a finite number of singularities in \mathbb{C} .

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case for EGF itself, e.g. for $\sigma = 123$.)

Let $\hat{C}_{\tau}(z)$ be the EGF for sequence $c_n(\tau)$.

Theorem (B., Conway & Guttmann 2018)

 $1/\hat{C}_{1423}(z)$ is not D-finite.

A useful fact:

Lemma

If f(z) is a D-finite function then f has a finite number of singularities in \mathbb{C} .

Proof.

If $P_k(z)f^{(n)}(z)$ is the highest-order term in the ODE satisfied by f, then every singularity of f must be a root of P_k .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

e.g. (162534978, (1, 3, 6)) is a 3-cluster of length 9 w.r.t $\sigma = 1423$.

Let $r_{n,k}(\sigma)$ be the number of k-clusters of length n w.r.t. σ .

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

e.g. (162534978, (1, 3, 6)) is a 3-cluster of length 9 w.r.t $\sigma = 1423$.

Let $r_{n,k}(\sigma)$ be the number of k-clusters of length n w.r.t. σ .

Define

$$\hat{R}_{\sigma}(z) = \sum_{n,k} r_{n,k} (-1)^k \frac{z^n}{n!}$$

Given pattern σ of length *m*, a *k*-cluster of length *n* w.r.t. σ is a pair (π, S) where

- π is a permutation of length n,
- $S = (s_1 = 1, s_2, \dots, s_k = n m + 1)$ is an sequence of indices such that $s_i s_{i-1} < m$, and
- $(\pi_{s_i}, \ldots, \pi_{s_i+m-1})$ is order-isomorphic to σ for each $i = 1, \ldots, k$.

So π is a permutation which is covered by k overlapping occurrences of the pattern σ .

e.g. (162534978, (1, 3, 6)) is a 3-cluster of length 9 w.r.t $\sigma = 1423$.

Let $r_{n,k}(\sigma)$ be the number of k-clusters of length n w.r.t. σ .

Define

$$\hat{R}_{\sigma}(z) = \sum_{n,k} r_{n,k} (-1)^k \frac{z^n}{n!}$$

Theorem (Goulden & Jackson 1983)

$$\hat{C}_ au(z)=rac{1}{1-z-\hat{R}_ au(z)}$$

For some patterns, the cluster numbers satisfy recurrence relations.

For some patterns, the cluster numbers satisfy recurrence relations.

e.g. For $\tau=$ 123: In a k-cluster, the last incidence of τ overlaps the previous one by one or two positions, so

$$r_{n,k} = r_{n-1,k-1} + r_{n-2,k-1}$$

For some patterns, the cluster numbers satisfy recurrence relations.

e.g. For $\tau=$ 123: In a k-cluster, the last incidence of τ overlaps the previous one by one or two positions, so

$$r_{n,k} = r_{n-1,k-1} + r_{n-2,k-1}$$

For $\tau = 1423$: In a k-cluster, condition on the first m incidences of τ overlapping by two positions:

$$r_{n,k} = \sum_{4 \le 2m+2 \le n} {\binom{n-m-2}{m}} r_{n-2m-1,k-m}$$

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

Lemma (Elizalde & Noy 2012)

Let $S(x) = 1 + x + R_{1423}(x)$. Then

$$S(x) = 1 + \frac{x}{1+x}S\left(\frac{x}{1+x^2}\right).$$
 (1)

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

Lemma (Elizalde & Noy 2012)

Let $S(x) = 1 + x + R_{1423}(x)$. Then

$$S(x) = 1 + \frac{x}{1+x} S\left(\frac{x}{1+x^2}\right).$$
 (1)

We solve S(x) and show it has an infinite number of singularities in \mathbb{C} , implying that S(x), and hence $1/\hat{C}_{1423}(z)$, is not D-finite.

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

Lemma (Elizalde & Noy 2012)

Let $S(x) = 1 + x + R_{1423}(x)$. Then

$$S(x) = 1 + \frac{x}{1+x} S\left(\frac{x}{1+x^2}\right). \tag{1}$$

We solve S(x) and show it has an infinite number of singularities in \mathbb{C} , implying that S(x), and hence $1/\hat{C}_{1423}(z)$, is not D-finite.

Note that (1) can be iterated by taking

$$x\mapsto \frac{x}{1+x^2} \qquad \Rightarrow \qquad S\left(\frac{x}{1+x^2}\right) \text{ in terms of } S\left(\frac{\left(\frac{x}{1+x^2}\right)}{1+\left(\frac{x}{1+x^2}\right)^2}\right), \text{ etc.}$$

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

Lemma (Elizalde & Noy 2012)

Let $S(x) = 1 + x + R_{1423}(x)$. Then

$$S(x) = 1 + \frac{x}{1+x} S\left(\frac{x}{1+x^2}\right). \tag{1}$$

We solve S(x) and show it has an infinite number of singularities in \mathbb{C} , implying that S(x), and hence $1/\hat{C}_{1423}(z)$, is not D-finite.

Note that (1) can be iterated by taking

$$x \mapsto \frac{x}{1+x^2} \qquad \Rightarrow \qquad S\left(\frac{x}{1+x^2}\right) \text{ in terms of } S\left(\frac{\left(\frac{x}{1+x^2}\right)}{1+\left(\frac{x}{1+x^2}\right)^2}\right), \text{ etc.}$$

() Show that S(x) can be solved by iteration \rightarrow infinite sum of rational functions

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

Lemma (Elizalde & Noy 2012)

Let $S(x) = 1 + x + R_{1423}(x)$. Then

$$S(x) = 1 + \frac{x}{1+x} S\left(\frac{x}{1+x^2}\right).$$
 (1)

We solve S(x) and show it has an infinite number of singularities in \mathbb{C} , implying that S(x), and hence $1/\hat{C}_{1423}(z)$, is not D-finite.

Note that (1) can be iterated by taking

$$x \mapsto rac{x}{1+x^2} \qquad \Rightarrow \qquad S\left(rac{x}{1+x^2}
ight) ext{ in terms of } S\left(rac{\left(rac{x}{1+x^2}
ight)}{1+\left(rac{x}{1+x^2}
ight)^2}
ight), ext{ etc.}$$

One of the solved by iteration → infinite sum of rational functions
One of the denominators has a distinct root in C

$$R_{\tau}(x) = \sum_{n,k} r_{n,k} (-1)^k x^n$$

Lemma (Elizalde & Noy 2012)

Let $S(x) = 1 + x + R_{1423}(x)$. Then

$$S(x) = 1 + \frac{x}{1+x} S\left(\frac{x}{1+x^2}\right).$$
 (1)

We solve S(x) and show it has an infinite number of singularities in \mathbb{C} , implying that S(x), and hence $1/\hat{C}_{1423}(z)$, is not D-finite.

Note that (1) can be iterated by taking

$$x \mapsto rac{x}{1+x^2} \qquad \Rightarrow \qquad S\left(rac{x}{1+x^2}
ight) ext{ in terms of } S\left(rac{\left(rac{x}{1+x^2}
ight)}{1+\left(rac{x}{1+x^2}
ight)^2}
ight), ext{ etc.}$$

- **()** Show that S(x) can be solved by iteration \rightarrow infinite sum of rational functions
- **(2)** Show that each of the denominators has a distinct root in $\mathbb C$
- **③** Show that each root is not cancelled by the numerator ightarrow genuine pole

Generalisation to longer patterns

The argument generalises to consecutive patterns of the form

$$1m23...(m-2)(m-1).$$

 \Rightarrow Infinite family of consecutive patterns for which the reciprocal of the EGF is not D-finite.

Reference

NRB, A R Conway & A J Guttmann: On consecutive pattern-avoiding permutations of length 4, 5 and beyond, *Discrete Mathematics and Theoretical Computer Science* **19** (2018), Article #8.

Reference

NRB, A R Conway & A J Guttmann: On consecutive pattern-avoiding permutations of length 4, 5 and beyond, *Discrete Mathematics and Theoretical Computer Science* **19** (2018), Article #8.

Thank you!