	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	

Models of pulled and compressed polymers

Nicholas Beaton

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems University of Melbourne, Australia

Combinatorial Applications to Biology, Chemistry and Physics University of Saskatchewan, Saskatoon 21-22 June 2014

Collaborators

Tony Guttmann, Stu Whittington, Buks van Rensburg

	The critical endpoint pulling force	Pushing at the top	Future work
000000 000000	0000000000	000000	
Outline			

Introduction

- Self-avoiding walks
- Generating functions

2 Polymer models

- Pulling and pushing
- Including a surface interaction

The critical endpoint pulling force

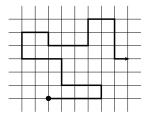
- Overview
- Self-avoiding bridges
- Decompositions
- Divergence of generating functions
- Further results

Pushing at the top

Pushing Dyck paths

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
•00000	000000	0000000000	000000	
Self-avoiding	g walks			

A self-avoiding walk (SAW) is a walk on a lattice which cannot revisit vertices.



For a given lattice, c_n is the number of *n*-step SAWs (up to translation). eg. square lattice:

$$c_0 = 1$$

 $c_1 = 4$
 $c_2 = 12$
 $c_3 = 36$
 $c_4 = 100, \dots$

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
00000	000000	0000000000	000000	

For regular lattices in $d \ge 2$, no known expression for c_n . But we still know something!

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
00000	000000	000000000	000000	0

For regular lattices in $d \ge 2$, no known expression for c_n . But we still know something!

Any SAW of length m + n can be split into two smaller SAWs, of lengths m and n. So

 $c_{m+n} \leq c_m c_n$.

So $\{c_n\}$ is a sub-multiplicative sequence. Then

 $\log c_{m+n} \leq \log c_m + \log c_m,$

so $\{\log c_n\}$ is a sub-additive sequence. It follows that the limit

$$\log \mu = \lim_{n \to \infty} \frac{1}{n} \log c_n$$

exists. $\log\mu$ is called the connective constant of the lattice. Then

$$c_n = \theta(n)\mu^n,$$

where μ is called the growth constant (sometimes connective constant) and $\theta(n) = e^{o(n)}$. By submultiplicativity, we know that $\theta(n) \ge 1$.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	

In general, μ is not known exactly. Honeycomb lattice is special:

Theorem (Duminil-Copin and Smirnov 2012)

On the honeycomb (hexagonal) lattice, $\mu = \sqrt{2 + \sqrt{2}}$.

For other lattices, have numerical estimates based on series data (eg. 70 terms for square lattice)

 $\mu_{
m square} pprox 2.63815853031$ $\mu_{
m triangular} pprox 4.150797226$

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	000000000	000000	0

Subexponential factors unproven, but

Conjecture (Nienhuis 1982)

$$c_n \sim An^{\gamma-1}\mu^n$$

for A, μ , γ constant. A and μ are lattice-dependent, γ depends only on dimension. In two dimensions, $\gamma = 43/32$.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	000000000	000000	0

Subexponential factors unproven, but

Conjecture (Nienhuis 1982)

$$c_n \sim A n^{\gamma - 1} \mu^n$$

for A, μ , γ constant. A and μ are lattice-dependent, γ depends only on dimension. In two dimensions, $\gamma = 43/32$.

In high dimensions, can do a bit better:

Theorem (Hara and Slade 1992)

On the hypercubic lattice in five or more dimensions,

 $c_n \sim A\mu^n$.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	

Also interested in the size and shape of SAWs. eg. let $\langle R_e^2 \rangle_n$ be the mean-squared end-to-end distance of SAWs of length *n*.

Conjecture (Nienhuis 1982; Lawler, Schramm and Werner 2004)

 $\langle R_e^2 \rangle_n \sim C n^{2\nu}$

with C lattice-dependent and ν dimension-dependent. In two dimensions, $\nu = 3/4$.

The exponents γ and ν are also connected to the scaling limit of SAWs:

Conjecture (Lawler, Schramm and Werner 2004)

Self-avoiding walks have a conformally invariant scaling limit, namely SLE_{8/3}.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	
Generating	functions			

The (ordinary) generating function for $\{c_n\}$ is

$$C(z)=\sum_{n\geq 0}c_nz^n$$

Then $z_c = 1/\mu$ is the radius of convergence of C(z). In general, expect the behaviour near z_c to be

$$C(z) \sim ext{const.} (1 - z/z_c)^{-\gamma},$$

which leads to $c_n \sim An^{\gamma-1}\mu^n$.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	
Generating	functions			

The (ordinary) generating function for $\{c_n\}$ is

$$C(z)=\sum_{n\geq 0}c_nz^n$$

Then $z_c = 1/\mu$ is the radius of convergence of C(z). In general, expect the behaviour near z_c to be

$$C(z) \sim {
m const.}(1-z/z_c)^{-\gamma},$$

which leads to $c_n \sim A n^{\gamma-1} \mu^n$.

Because $c_n \ge \mu^n$,

$$C(z) \geq \sum_{n \geq 0} \mu^n z^n = \frac{1}{1 - z\mu}$$

So

$$C(z) o \infty$$
 as $z o z_c^-$.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	
Generating	functions			

The (ordinary) generating function for $\{c_n\}$ is

$$C(z) = \sum_{n \ge 0} c_n z^n$$

Then $z_c = 1/\mu$ is the radius of convergence of C(z). In general, expect the behaviour near z_c to be

$$C(z) \sim ext{const.} (1 - z/z_c)^{-\gamma},$$

which leads to $c_n \sim An^{\gamma-1}\mu^n$.

Because $c_n \geq \mu^n$, $C(z) \geq \sum_{n \geq 0} \mu^n z^n = rac{1}{1-z\mu}$

So

$$C(z) o \infty$$
 as $z o z_c^-$.

Expect that C(z) is non-D-finite, i.e. does not satisfy a linear ODE with polynomial coefficients.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
	00000			
Polymer mo	odels			

SAWs are an important model in statistical mechanics of linear polymers in a solvent: chains of monomers, connected by bonds of fixed length and at fixed angles.

Unlike random walks (another, simpler model), SAWs encapsulate the excluded volume principle: two different monomers can't occupy the same point in space.

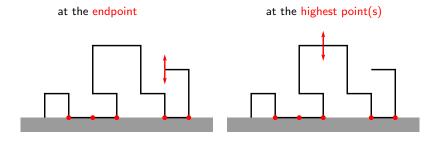
Monomers in a polymer can interact with each other, other polymers, surfaces (both penetrable and impenetrable) or with other external agents. Usually, these interactions are either attractive or repulsive.

Can also model forces applied to the polymer at various points/directions.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	00000	0000000000	000000	
Pulling ar	nd pushing			

We can model an external agent which is pulling the polymer away from the surface or pushing it onto the surface.

If one end of the polymer is tied to the surface, there are two natural places the force could be applied:



	Polymer models	The critical endpoint pulling force	Pushing at the top	
	000000			
Force applie	d at the endpo	bint		

$$U_n^e(y) = \sum_h u_n^e(h) y^h.$$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	00000	0000000000	000000	
Force applied	d at the endpoi	nt		

$$U_n^e(y) = \sum_h u_n^e(h) y^h.$$

When y is small, walks whose endpoint is close to the surface dominate. When y is large, walks whose endpoint is far away from the surface dominate. So we can interpret $y = e^{f}$, where f is force: f > 0 if pulling up, f < 0 if pushing down.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	
Force applie	ed at the endp	point		

$$U_n^e(y) = \sum_h u_n^e(h) y^h.$$

When y is small, walks whose endpoint is close to the surface dominate. When y is large, walks whose endpoint is far away from the surface dominate. So we can interpret $y = e^{f}$, where f is force: f > 0 if pulling up, f < 0 if pushing down.

For similar reasons as c_n , the free energy exists and is

$$\lambda^{e}(y) = \lim_{n \to \infty} \frac{1}{n} \log U_{n}^{e}(y).$$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	00000	0000000000	000000	
Force applie	d at the endpo	int		

$$U_n^e(y) = \sum_h u_n^e(h) y^h.$$

When y is small, walks whose endpoint is close to the surface dominate. When y is large, walks whose endpoint is far away from the surface dominate. So we can interpret $y = e^{f}$, where f is force: f > 0 if pulling up, f < 0 if pushing down.

For similar reasons as c_n , the free energy exists and is

$$\lambda^{e}(y) = \lim_{n \to \infty} \frac{1}{n} \log U_{n}^{e}(y).$$

For y > 0, $\lambda^e(y)$ is

- convex in log $y \iff$ continuous)
- non-decreasing

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

 $U_n^e(1)$ just counts walks in the upper half-plane. $U_n^e(0)$ counts walks in the upper half-plane which start and end on the surface. Both of these have the same growth rate as full-plane walks, i.e. μ . (Easy to show.)

So $\lambda^e(0) = \lambda^e(1) = \log \mu \quad \Rightarrow \quad \lambda^e(y) = \log \mu \text{ for } 0 \leq y \leq 1.$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

 $U_n^e(1)$ just counts walks in the upper half-plane. $U_n^e(0)$ counts walks in the upper half-plane which start and end on the surface. Both of these have the same growth rate as full-plane walks, i.e. μ . (Easy to show.)

So $\lambda^e(0) = \lambda^e(1) = \log \mu \quad \Rightarrow \quad \lambda^e(y) = \log \mu \text{ for } 0 \leq y \leq 1.$

On the other hand, the walk which goes straight up has weight y^n , so $U_n^e(y) \ge y^n$, and

 $\lambda^{e}(y) \geq \log y.$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

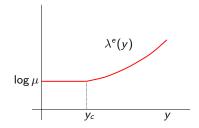
 $U_n^e(1)$ just counts walks in the upper half-plane. $U_n^e(0)$ counts walks in the upper half-plane which start and end on the surface. Both of these have the same growth rate as full-plane walks, i.e. μ . (Easy to show.)

So
$$\lambda^{e}(0) = \lambda^{e}(1) = \log \mu \quad \Rightarrow \quad \lambda^{e}(y) = \log \mu \text{ for } 0 \le y \le 1.$$

On the other hand, the walk which goes straight up has weight $y^n,$ so $U^e_n(y) \geq y^n,$ and

$$\lambda^e(y) \ge \log y.$$

So $\lambda^e(y)$ must be non-analytic at some point $y = y_c^e \ge 1$. This is the critical point, where walks change from free to ballistic.



ndpoint pulling force Pushing at the top Future work	The critical endpoint pulling	Polymer models	
000000 00000	0000000000	000000	000000

What does this really mean?

000000 000000	0000000000	000000	0

What does this really mean?

Put a Boltzmann distribution on the walks of length n by setting

$$\mathbb{P}_n(\gamma) = \frac{y^{h(\gamma)}}{U_n^e(y)}$$

where $h(\gamma)$ is the height of γ 's endpoint.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	

What does this really mean?

Put a Boltzmann distribution on the walks of length n by setting

$$\mathbb{P}_n(\gamma) = \frac{y^{h(\gamma)}}{U_n^e(y)}$$

where $h(\gamma)$ is the height of γ 's endpoint.

Then the mean (endpoint) height per unit length for walks of length n is

$$\delta_n(y) = \frac{1}{n} \frac{\sum_h h u_n^e(h) y^h}{U_n^e(y)} = \frac{y}{n} \frac{\partial \log U_n^e(y)}{\partial y}$$

As $n \to \infty$, this becomes

$$\delta_n(y) \to y \frac{\partial \lambda^e(y)}{\partial y} \begin{cases} = 0 & \text{if } y < y_c \\ > 0 & \text{if } y > y_c. \end{cases}$$

So in the free phase, the average height of the endpoint is o(n), and walks "drift" away from the surface slowly. In the ballistic phase, the endpoint is at distance $\Theta(n)$ from the surface.

(In the free phase, would expect the average height to grow like $n^{\nu} = n^{3/4}$.)

Induding a curfe as interaction						
000000	000000	000000000	000000	0		
	Polymer models	The critical endpoint pulling force	Pushing at the top			

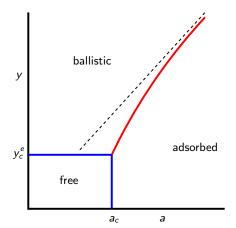
Including a surface interaction

Can include a second fugacity *a* associated with returns to the surface. Then the surface can be repulsive (small *a*) or attractive (large *a*), and there is another critical value a_c which separates the two phases.

including a surface interaction

Can include a second fugacity *a* associated with returns to the surface. Then the surface can be repulsive (small *a*) or attractive (large *a*), and there is another critical value a_c which separates the two phases.

Bivariate free energy $\kappa^{e}(a, y)$, which has critical points along several lines in the a - y plane.



	Polymer models	The critical endpoint pulling force	Pushing at the top	
		• 0 00000000		
The critic	al endpoint pull	ing force		

Theorem

For the d-dimensional hypercubic lattice, $d \ge 2$, the critical value of the endpoint pulling fugacity is $y_c^e = 1$.

	Polymer models	The critical endpoint pulling force	Pushing at the top					
		• 0 00000000						
The critic	The critical endpoint pulling force							

Theorem

For the d-dimensional hypercubic lattice, $d \ge 2$, the critical value of the endpoint pulling fugacity is $y_c^e = 1$.

Was previously conjectured from numerical series analysis and Monte Carlo simulations.

Introduction	Polymer models	The critical endpoint pulling force	Pushing at the top	Future work			
000000	000000	000000000	000000				
The critic	The critical endpoint pulling force						

Theorem

For the d-dimensional hypercubic lattice, $d \ge 2$, the critical value of the endpoint pulling fugacity is $y_c^e = 1$.

Was previously conjectured from numerical series analysis and Monte Carlo simulations.

(It may also follow from some very technical probabilistic results of loffe and Velenik, but this remains unpublished.)

000000 000000 0 000000 0		Polymer models	The critical endpoint pulling force	Pushing at the top	
	000000	000000	000000000	000000	0

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

Let $\mu_u^e(y) = \exp(\lambda^e(y))$ be the growth rate of the partition functions $U_n^e(y)$, and

$$U^e(z,y) = \sum_n U^e_n(y) z^n$$

be the bivariate generating function with z conjugate to length and y conjugate to endpoint height.

000000 000000 000000 00000 0		Polymer models	The critical endpoint pulling force	Pushing at the top	
	000000	000000	000000000	000000	0

Let $\mu_u^e(y) = \exp(\lambda^e(y))$ be the growth rate of the partition functions $U_n^e(y)$, and

$$U^{e}(z,y) = \sum_{n} U^{e}_{n}(y) z^{n}$$

be the bivariate generating function with z conjugate to length and y conjugate to endpoint height. Then

$$z_u^e(y) = \mu_u^e(y)^{-1}$$

is the radius of convergence of $U^e(z, y)$.

000000 000000 0 00000000 00000 0		Polymer models	The critical endpoint pulling force	Pushing at the top	
	000000	000000	000000000	000000	0

Let $\mu_u^e(y) = \exp(\lambda^e(y))$ be the growth rate of the partition functions $U_n^e(y)$, and

$$U^{e}(z,y) = \sum_{n} U^{e}_{n}(y) z^{n}$$

be the bivariate generating function with z conjugate to length and y conjugate to endpoint height. Then

$$z_u^e(y) = \mu_u^e(y)^{-1}$$

is the radius of convergence of $U^e(z, y)$.

So we need to show that the radius of convergence $z_u^e(y)$ of $U^e(z, y)$ is strictly decreasing for y > 1.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000000		
Overview o	of proof			

The proof has four steps:

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000000		
Overview of	proof			

The proof has four steps:

- Find a relationship between the (bivariate) generating functions of four objects:
 - full-plane SAWs
 - half-plane SAWs
 - self-avoiding bridges
 - irreducible self-avoiding bridges

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	000000000	000000	
Overview of	f proof			

The proof has four steps:

- Find a relationship between the (bivariate) generating functions of four objects:
 - full-plane SAWs
 - half-plane SAWs
 - self-avoiding bridges
 - irreducible self-avoiding bridges
- Show that the (bivariate) generating functions of full-plane SAWs, half-plane SAWs and bridges must diverge at their critical point(s).

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	000000000	000000	
Overview c	of proof			

The proof has four steps:

- Find a relationship between the (bivariate) generating functions of four objects:
 - full-plane SAWs
 - half-plane SAWs
 - self-avoiding bridges
 - irreducible self-avoiding bridges
- Show that the (bivariate) generating functions of full-plane SAWs, half-plane SAWs and bridges must diverge at their critical point(s).
- Show that this can only happen when the generating function of irreducible bridges is equal to 1.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	000000000	000000	
Overview of	f proof			

The proof has four steps:

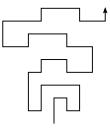
- Find a relationship between the (bivariate) generating functions of four objects:
 - full-plane SAWs
 - half-plane SAWs
 - self-avoiding bridges
 - irreducible self-avoiding bridges
- Show that the (bivariate) generating functions of full-plane SAWs, half-plane SAWs and bridges must diverge at their critical point(s).
- Show that this can only happen when the generating function of irreducible bridges is equal to 1.
- Show that the value of z solving this must decrease as y increases.

	Polymer models	The critical endpoint pulling force	Pushing at the top				
000000	000000	000000000	000000				
Self-avoid	Self-avoiding bridges						

A self-avoiding bridge is a SAW $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n)$, where $\gamma_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(d)})$, such that

$$x_0^{(d)} < x_i^{(d)} \le x_n^{(d)}$$
 for $i = 1, \dots, n$.

In 2 dimensions, a bridge is a SAW whose starting point has strictly minimal *y*-coordinate and whose end point has maximal *y*-coordinate:

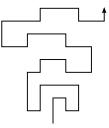


	Polymer models	The critical endpoint pulling force	Pushing at the top			
000000	000000	000000000	000000			
Self-avoid	Self-avoiding bridges					

A self-avoiding bridge is a SAW $\gamma = (\gamma_0, \gamma_1, \dots, \gamma_n)$, where $\gamma_i = (x_i^{(1)}, x_i^{(2)}, \dots, x_i^{(d)})$, such that

$$x_0^{(d)} < x_i^{(d)} \le x_n^{(d)}$$
 for $i = 1, \dots, n$.

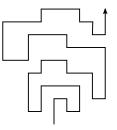
In 2 dimensions, a bridge is a SAW whose starting point has strictly minimal *y*-coordinate and whose end point has maximal *y*-coordinate:



Bridges are useful because they can be freely concatenated without intersecting.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000000		
Irreducible b	oridges			

A bridge which cannot be split into a concatenation of two or more smaller bridges is irreducible:



Growth constants etc. are well-defined for bridges and irreducible bridges, and are the same as full-plane and half-plane walks, ie. μ .

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		00000000000		
Decompositions				

We already have the generating function $U^e(z, y)$ for upper half-plane walks, with z tracking length and y tracking endpoint height.

Define B(z, y) and I(z, y) for bridges and irreducible bridges. (Endpoint and uppermost point are the same thing.)

Finally, introduce $C^{e}(z, y)$ for full-plane SAWs. Because the endpoint can be lower than the starting point, the coefficient of z^{n} is a Laurent polynomial in y.

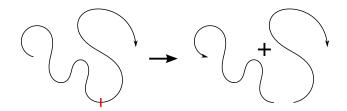
	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

Use well-known existing decompositions, but have to account for the second variable y.

000000 000000 0000 0000 00 00000 0		Polymer models	The critical endpoint pulling force	Pushing at the top	
	000000	000000	0000000000	000000	0

Use well-known existing decompositions, but have to account for the second variable y.

Any full-plane SAW can be split into two half-plane SAWs, with the direction of one reversed:

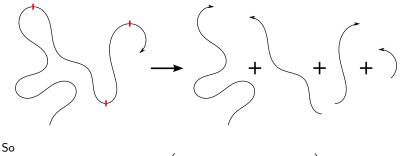


Thus

$$C^{e}(z,y) \leq U^{e}(x,y)U^{e}(x,1/y)$$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	00000000000	000000	0

Every half-plane SAW can be decomposed as a sequence of bridges which alternate direction and decrease in height:



$$U^e(z,y) \leq \prod_{h\geq 1} \left(1+(y^h+y^{-h})\sum_{n\geq 1}b_n(h)z^n\right)$$

where $b_n(h)$ is the number of bridges of length *n* and height *h*.

Using $1 + x \le e^x$, get

$$U^{\mathsf{e}}(z,y) \leq e^{B(z,y)+B(z,1/y)}$$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	00000000000	000000	0

Combining,

$$C^{e}(z,y) \leq e^{2(B(z,y)+B(z,1/y))}$$

Finally, since every bridge can be written uniquely as a concatenation of irreducible bridges, we have

$$B(z,y) = \frac{I(z,y)}{1-I(z,y)}$$

	Polymer models	The critical endpoint pulling force	Pushing at the top			
		0000000000				
Divergence of generating functions (sketch)						

$$C^e_{m+n}(y) \leq C^e_m(y)C^e_n(y)$$

so $C_n^e(y) \ge \mu^e(y)^n$ where $\mu^e(y) = z_c^e(y)^{-1}$.

$$C^e_{m+n}(y) \leq C^e_m(y)C^e_n(y)$$

so $C_n^e(y) \ge \mu^e(y)^n$ where $\mu^e(y) = z_c^e(y)^{-1}$.

Then for $y \ge 1$, $U^e(z, y)$ must have the same critical point $z_u^e(y) = z_c^e(y)$, and diverge there. The same then goes for B(z, y). (In both cases it's not the 1/y function, because both $U^e(z, y)$ and B(z, y) are strictly increasing in y.)

	Polymer models	The critical endpoint pulling force	Pushing at the top			
		0000000000				
Divergence of generating functions (sketch)						

$$C^e_{m+n}(y) \leq C^e_m(y)C^e_n(y)$$

so $C_n^e(y) \ge \mu^e(y)^n$ where $\mu^e(y) = z_c^e(y)^{-1}$.

Then for $y \ge 1$, $U^e(z, y)$ must have the same critical point $z_u^e(y) = z_c^e(y)$, and diverge there. The same then goes for B(z, y). (In both cases it's not the 1/y function, because both $U^e(z, y)$ and B(z, y) are strictly increasing in y.)

But the only way that B(z, y) can diverge is if I(z, y) = 1.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		0000000000		
Divergenc	e of generating	functions (sketch)		

$$C^e_{m+n}(y) \leq C^e_m(y)C^e_n(y)$$

so $C_n^e(y) \ge \mu^e(y)^n$ where $\mu^e(y) = z_c^e(y)^{-1}$.

Then for $y \ge 1$, $U^e(z, y)$ must have the same critical point $z_u^e(y) = z_c^e(y)$, and diverge there. The same then goes for B(z, y). (In both cases it's not the 1/y function, because both $U^e(z, y)$ and B(z, y) are strictly increasing in y.)

But the only way that B(z, y) can diverge is if I(z, y) = 1.

 $I(z, y) = zy + 2z^6y^2 + O(z^7)$ is strictly increasing with y. So as y increases beyond y = 1, the solution to I(z, y) = 1 must decrease.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		0000000000		
Divergenc	e of generating	functions (sketch)		

$$C^e_{m+n}(y) \leq C^e_m(y)C^e_n(y)$$

so $C_n^e(y) \ge \mu^e(y)^n$ where $\mu^e(y) = z_c^e(y)^{-1}$.

Then for $y \ge 1$, $U^e(z, y)$ must have the same critical point $z_u^e(y) = z_c^e(y)$, and diverge there. The same then goes for B(z, y). (In both cases it's not the 1/y function, because both $U^e(z, y)$ and B(z, y) are strictly increasing in y.)

But the only way that B(z, y) can diverge is if I(z, y) = 1.

 $I(z, y) = zy + 2z^6y^2 + O(z^7)$ is strictly increasing with y. So as y increases beyond y = 1, the solution to I(z, y) = 1 must decrease.

So $z_c^e(y) = z_u^e(y)$ is strictly decreasing for y > 1, and hence $y_c^e = 1$.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		0000000000		
Further resu	lts			

Can further complete the picture by relating the critical points for the different objects in the y < 1 and y > 1 regimes.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000000		
Further res	ults			

Can further complete the picture by relating the critical points for the different objects in the y < 1 and y > 1 regimes.

Can be extended to self-avoiding polygons pulled at a vertex opposite the starting point.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000000		
Further re	sults			

Can further complete the picture by relating the critical points for the different objects in the y < 1 and y > 1 regimes.

Can be extended to self-avoiding polygons pulled at a vertex opposite the starting point.

Values of the critical exponents have been conjectured for some objects in some regimes: full- and half-plane walks for all values of y, bridges for $y \ge 1$.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	00000	
Pushing a	t the top			

When the force is applied at the topmost vertex(s), the phase diagram is (probably) qualitatively the same, and the free energy $\kappa^t(a, y)$ may be exactly the same as $\kappa^e(a, y)$.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
			• 00 000	
Pushing a	t the top			

When the force is applied at the topmost vertex(s), the phase diagram is (probably) qualitatively the same, and the free energy $\kappa^t(a, y)$ may be exactly the same as $\kappa^e(a, y)$.

When y > 1, there is little or no difference between the two: walks (and bridges) are ballistic, so the endpoint is at/near the top anyway. Critical exponents should be the same.

Pushing a	t the top			
			00000	
	Polymer models	The critical endpoint pulling force	Pushing at the top	

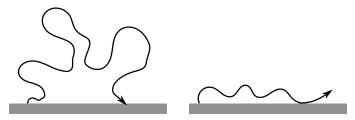
When the force is applied at the topmost vertex(s), the phase diagram is (probably) qualitatively the same, and the free energy $\kappa^t(a, y)$ may be exactly the same as $\kappa^e(a, y)$.

When y > 1, there is little or no difference between the two: walks (and bridges) are ballistic, so the endpoint is at/near the top anyway. Critical exponents should be the same.

When y < 1, however, things are very different:

pushing at end

pushing at top



Introduction 000000	Polymer models 000000	The critical endpoint pulling force	Pushing at the top O●OOOO	

When pushing at the endpoint, both ends must be near the surface but the rest of the walk has a lot of freedom.

 \Rightarrow different critical exponent for y < 1, y = 1 and y > 1.

When pushing at the top, the whole walk must be near the surface. \Rightarrow much stronger restriction.

Introduction 000000	Polymer models 000000	The critical endpoint pulling force	Pushing at the top O●OOOO	

When pushing at the endpoint, both ends must be near the surface but the rest of the walk has a lot of freedom.

 \Rightarrow different critical exponent for y < 1, y = 1 and y > 1.

When pushing at the top, the whole walk must be near the surface. \Rightarrow much stronger restriction.

Pushing at the top looks like restricting walks to a strip of finite height, so we might even expect the critical point (and hence the growth rate $\mu_u^t(y)$) to change.

Introduction 000000	Polymer models 000000	The critical endpoint pulling force	Pushing at the top O●OOOO	

When pushing at the endpoint, both ends must be near the surface but the rest of the walk has a lot of freedom.

 \Rightarrow different critical exponent for y < 1, y = 1 and y > 1.

When pushing at the top, the whole walk must be near the surface. \Rightarrow much stronger restriction.

Pushing at the top looks like restricting walks to a strip of finite height, so we might even expect the critical point (and hence the growth rate $\mu_u^t(y)$) to change.

But walks with large height, even though they are heavily penalised, still contribute enough to keep the growth rate at constant μ .

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

000000 0000000 00000000 00000 0		Polymer models	The critical endpoint pulling force	Pushing at the top	
	000000	000000	0000000000	000000	0

Numerical series analysis suggests that for y < 1,

$$U_n^t(y) \sim A(y) n^{\gamma'-1} \mu^n \tau(y)^{n^{\sigma}},$$

where $\tau(y) < 1$ and $\sigma \approx 0.42$.

Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000	

Numerical series analysis suggests that for y < 1,

$$U_n^t(y) \sim A(y) n^{\gamma'-1} \mu^n \tau(y)^{n^{\sigma}},$$

where $\tau(y) < 1$ and $\sigma \approx 0.42$.

Greg Lawler has (tentatively) conjectured that $\sigma = 3/7$ using SLE arguments.

Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000	

Numerical series analysis suggests that for y < 1,

$$U_n^t(y) \sim A(y) n^{\gamma'-1} \mu^n \tau(y)^{n^{\sigma}},$$

where $\tau(y) < 1$ and $\sigma \approx 0.42$.

Greg Lawler has (tentatively) conjectured that $\sigma=3/7$ using SLE arguments.

Similar for bridges when y < 1.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	

Numerical series analysis suggests that for y < 1,

$$U_n^t(y) \sim A(y) n^{\gamma'-1} \mu^n \tau(y)^{n^{\sigma}},$$

where $\tau(y) < 1$ and $\sigma \approx 0.42$.

Greg Lawler has (tentatively) conjectured that $\sigma = 3/7$ using SLE arguments.

Similar for bridges when y < 1.

Resembles the conjectured asymptotics for collapsing partially directed walks (there, $\sigma = 1/2$) [Brak, Owczarek, Prellberg 1993].

Introduction 000000	Polymer models 000000	The critical endpoint pulling force	Pushing at the top ○○○●○○	
Pushing Dyc	ck paths			

Try looking at a much simpler model to see if we observe the same behaviour.

Dyck paths take north-east (1, 1) or south-east (1, -1) steps, start and end on the surface, and remain above the surface.

Use z to track half-length (length is always even) and y to track height, as before. Then the generating function D(z, y) can be computed in several ways.

Unfortunately, extracting detailed information from the generating function for y < 1 proves to be very difficult.

Polymer models	The critical endpoint pulling force	Pushing at the top	
		000000	

However, can use it to calculate the free energy $\lambda^d(y)$ exactly:

$$\lambda^d(y) = \log\left(egin{cases} 4 & ext{if } y \leq 1 \ rac{(y+1)^2}{y} & ext{if } y > 1 \end{array}
ight)$$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	

However, can use it to calculate the free energy $\lambda^d(y)$ exactly:

$$\lambda^d(y) = \log\left(egin{cases} 4 & ext{if } y \leq 1 \ rac{(y+1)^2}{y} & ext{if } y > 1 \end{array}
ight)$$

For y > 1, the partition function is asymptotically

$$D_n(y)\sim rac{(y-1)^3}{y(y+1)^2}\cdot \left(rac{(y+1)^2}{y}
ight)^n$$

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	00000	

For y < 1, Robin Pemantle and Brendan McKay use the fact that Dyck paths become reflected Brownian bridges in the scaling limit. If the distribution of the heights tends to a Gaussian, this can be asymptotically approximated and integrated. They obtain

$$D_n(y) = A(y)n^{-5/6}4^n\tau(y)^{n^{1/3}}(1+O(n^{-1/3})),$$

where

$$A(y) = (1 - y)2^{5/3}3^{-1/2}\pi^{5/6}e^{2r}$$

$$\tau(y) = \exp(-3 \times 2^{-2/3}\pi^{2/3}r^{2/3})$$

and $r = -\log y$.

Matches numerical analyses of 2500-term series.

Further asymptotic terms can be calculated using the same method.

	Polymer models	The critical endpoint pulling force	Pushing at the top	Future work
000000	000000	0000000000	000000	•
Future work				

Complete the phase diagram picture for endpoint pulling when surface $a \neq 1$. Is it really the same for top-pulling?

On the honeycomb lattice, a_c is known exactly. Can other parts of the phase diagram be calculated exactly?

What kind of singularity leads to the y < 1 asymptotics for top-pushed SAWs and Dyck paths? Results are known for $\tau^{n^{\sigma}}$ when $\tau > 1$, but we have $\tau(y) < 1$.

This can all be repeated with a penetrable surface. Still have $y_c^e = 1$, but the surface weight *a* is quite different.

	Polymer models	The critical endpoint pulling force	Pushing at the top	
000000	000000	0000000000	000000	0

Thank you!