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Self-avoiding walks

A self-avoiding walk (SAW) is a walk on a lattice which cannot revisit vertices.

For a given lattice, cn is the number of n-step SAWs (up to translation).
eg. square lattice:

c0 = 1

c1 = 4

c2 = 12

c3 = 36

c4 = 100, . . .



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

For regular lattices in d ≥ 2, no known expression for cn. But we still know
something!

Any SAW of length m + n can be split into two smaller SAWs, of lengths m
and n. So

cm+n ≤ cmcn.

So {cn} is a sub-multiplicative sequence. Then

log cm+n ≤ log cm + log cm,

so {log cn} is a sub-additive sequence. It follows that the limit

logµ = lim
n→∞

1

n
log cn

exists. logµ is called the connective constant of the lattice. Then

cn = θ(n)µn,

where µ is called the growth constant (sometimes connective constant) and
θ(n) = eo(n). By submultiplicativity, we know that θ(n) ≥ 1.



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

For regular lattices in d ≥ 2, no known expression for cn. But we still know
something!

Any SAW of length m + n can be split into two smaller SAWs, of lengths m
and n. So

cm+n ≤ cmcn.

So {cn} is a sub-multiplicative sequence. Then

log cm+n ≤ log cm + log cm,

so {log cn} is a sub-additive sequence. It follows that the limit

logµ = lim
n→∞

1

n
log cn

exists. logµ is called the connective constant of the lattice. Then

cn = θ(n)µn,

where µ is called the growth constant (sometimes connective constant) and
θ(n) = eo(n). By submultiplicativity, we know that θ(n) ≥ 1.



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

In general, µ is not known exactly. Honeycomb lattice is special:

Theorem (Duminil-Copin and Smirnov 2012)

On the honeycomb (hexagonal) lattice, µ =
√

2 +
√

2.

For other lattices, have numerical estimates based on series data (eg. 70 terms
for square lattice)

µsquare ≈ 2.63815853031 µtriangular ≈ 4.150797226
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Subexponential factors unproven, but

Conjecture (Nienhuis 1982)

cn ∼ Anγ−1µn

for A, µ, γ constant. A and µ are lattice-dependent, γ depends only on
dimension. In two dimensions, γ = 43/32.

In high dimensions, can do a bit better:

Theorem (Hara and Slade 1992)

On the hypercubic lattice in five or more dimensions,

cn ∼ Aµn.
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Also interested in the size and shape of SAWs. eg. let 〈R2
e 〉n be the

mean-squared end-to-end distance of SAWs of length n.

Conjecture (Nienhuis 1982; Lawler, Schramm and Werner 2004)

〈R2
e 〉n ∼ Cn2ν

with C lattice-dependent and ν dimension-dependent. In two dimensions,
ν = 3/4.

The exponents γ and ν are also connected to the scaling limit of SAWs:

Conjecture (Lawler, Schramm and Werner 2004)

Self-avoiding walks have a conformally invariant scaling limit, namely SLE8/3.
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Generating functions

The (ordinary) generating function for {cn} is

C(z) =
∑
n≥0

cnz
n

Then zc = 1/µ is the radius of convergence of C(z). In general, expect the
behaviour near zc to be

C(z) ∼ const.(1− z/zc)−γ ,

which leads to cn ∼ Anγ−1µn.

Because cn ≥ µn,

C(z) ≥
∑
n≥0

µnzn =
1

1− zµ

So
C(z)→∞ as z → z−c .

Expect that C(z) is non-D-finite, ie. does not satisfy a linear ODE with
polynomial coefficients.
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Polymer models

SAWs are an important model in statistical mechanics of linear polymers in a
solvent: chains of monomers, connected by bonds of fixed length and at fixed
angles.

Unlike random walks (another, simpler model), SAWs encapsulate the excluded
volume principle: two different monomers can’t occupy the same point in space.

Monomers in a polymer can interact with each other, other polymers, surfaces
(both penetrable and impenetrable) or with other external agents. Usually,
these interactions are either attractive or repulsive.

Can also model forces applied to the polymer at various points/directions.
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Pulling and pushing

We can model an external agent which is pulling the polymer away from the
surface or pushing it onto the surface.

If one end of the polymer is tied to the surface, there are two natural places the
force could be applied:

at the endpoint at the highest point(s)
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Force applied at the endpoint

Let ue
n(h) be the number of n-step SAWs in the upper half-plane which end at

height h above the surface. Then define the partition function

Ue
n (y) =

∑
h

ue
n(h)yh.

When y is small, walks whose endpoint is close to the surface dominate. When
y is large, walks whose endpoint is far away from the surface dominate. So we
can interpret y = e f , where f is force: f > 0 if pulling up, f < 0 if pushing
down.

For similar reasons as cn, the free energy exists and is

λe(y) = lim
n→∞

1

n
logUe

n (y).

For y > 0, λe(y) is

convex in log y (⇒ continuous)

non-decreasing
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Ue
n (1) just counts walks in the upper half-plane. Ue

n (0) counts walks in the
upper half-plane which start and end on the surface. Both of these have the
same growth rate as full-plane walks, i.e. µ. (Easy to show.)

So λe(0) = λe(1) = logµ ⇒ λe(y) = logµ for 0 ≤ y ≤ 1.

On the other hand, the walk which goes straight up has weight yn, so
Ue

n (y) ≥ yn, and
λe(y) ≥ log y .

So λe(y) must be non-analytic at some point y = y e
c ≥ 1. This is the critical

point, where walks change from free to ballistic.

logµ

yyc

λe(y)
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What does this really mean?

Put a Boltzmann distribution on the walks of length n by setting

Pn(γ) =
yh(γ)

Ue
n (y)

where h(γ) is the height of γ’s endpoint.

Then the mean (endpoint) height per unit length for walks of length n is

δn(y) =
1

n

∑
h hu

e
n(h)yh

Ue
n (y)

=
y

n

∂ logUe
n (y)

∂y
.

As n→∞, this becomes

δn(y)→ y
∂λe(y)

∂y

{
= 0 if y < yc

> 0 if y > yc .

So in the free phase, the average height of the endpoint is o(n), and walks
“drift” away from the surface slowly. In the ballistic phase, the endpoint is at
distance Θ(n) from the surface.

(In the free phase, would expect the average height to grow like nν = n3/4.)
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Including a surface interaction

Can include a second fugacity a associated with returns to the surface. Then
the surface can be repulsive (small a) or attractive (large a), and there is
another critical value ac which separates the two phases.

Bivariate free energy κe(a, y), which has critical points along several lines in
the a− y plane.

y

y e
c

aac

free

ballistic

adsorbed
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The critical endpoint pulling force

Theorem

For the d-dimensional hypercubic lattice, d ≥ 2, the critical value of the
endpoint pulling fugacity is y e

c = 1.

Was previously conjectured from numerical series analysis and Monte Carlo
simulations.

(It may also follow from some very technical probabilistic results of Ioffe and
Velenik, but this remains unpublished.)
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We know that y e
c ≥ 1, so to show that y e

c = 1, we must show that
λe(y) > logµ for y > 1.

Let µe
u(y) = exp(λe(y)) be the growth rate of the partition functions Ue

n (y),
and

Ue(z , y) =
∑
n

Ue
n (y)zn

be the bivariate generating function with z conjugate to length and y
conjugate to endpoint height. Then

zeu (y) = µe
u(y)−1

is the radius of convergence of Ue(z , y).

So we need to show that the radius of convergence zeu (y) of Ue(z , y) is strictly
decreasing for y > 1.



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

We know that y e
c ≥ 1, so to show that y e

c = 1, we must show that
λe(y) > logµ for y > 1.

Let µe
u(y) = exp(λe(y)) be the growth rate of the partition functions Ue

n (y),
and

Ue(z , y) =
∑
n

Ue
n (y)zn

be the bivariate generating function with z conjugate to length and y
conjugate to endpoint height.

Then

zeu (y) = µe
u(y)−1

is the radius of convergence of Ue(z , y).

So we need to show that the radius of convergence zeu (y) of Ue(z , y) is strictly
decreasing for y > 1.



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

We know that y e
c ≥ 1, so to show that y e

c = 1, we must show that
λe(y) > logµ for y > 1.

Let µe
u(y) = exp(λe(y)) be the growth rate of the partition functions Ue

n (y),
and

Ue(z , y) =
∑
n

Ue
n (y)zn

be the bivariate generating function with z conjugate to length and y
conjugate to endpoint height. Then

zeu (y) = µe
u(y)−1

is the radius of convergence of Ue(z , y).

So we need to show that the radius of convergence zeu (y) of Ue(z , y) is strictly
decreasing for y > 1.



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

We know that y e
c ≥ 1, so to show that y e

c = 1, we must show that
λe(y) > logµ for y > 1.

Let µe
u(y) = exp(λe(y)) be the growth rate of the partition functions Ue

n (y),
and

Ue(z , y) =
∑
n

Ue
n (y)zn

be the bivariate generating function with z conjugate to length and y
conjugate to endpoint height. Then

zeu (y) = µe
u(y)−1

is the radius of convergence of Ue(z , y).

So we need to show that the radius of convergence zeu (y) of Ue(z , y) is strictly
decreasing for y > 1.



Introduction Polymer models The critical endpoint pulling force Pushing at the top Future work

Overview of proof

The proof has four steps:

1 Find a relationship between the (bivariate) generating functions of four
objects:

full-plane SAWs
half-plane SAWs
self-avoiding bridges
irreducible self-avoiding bridges

2 Show that the (bivariate) generating functions of full-plane SAWs,
half-plane SAWs and bridges must diverge at their critical point(s).

3 Show that this can only happen when the generating function of
irreducible bridges is equal to 1.

4 Show that the value of z solving this must decrease as y increases.
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Self-avoiding bridges

A self-avoiding bridge is a SAW γ = (γ0, γ1, . . . , γn), where

γi = (x
(1)
i , x

(2)
i , . . . , x

(d)
i ), such that

x
(d)
0 < x

(d)
i ≤ x (d)

n for i = 1, . . . , n.

In 2 dimensions, a bridge is a SAW whose starting point has strictly minimal
y -coordinate and whose end point has maximal y -coordinate:

Bridges are useful because they can be freely concatenated without intersecting.
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Irreducible bridges

A bridge which cannot be split into a concatenation of two or more smaller
bridges is irreducible:

Growth constants etc. are well-defined for bridges and irreducible bridges, and
are the same as full-plane and half-plane walks, ie. µ.
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Decompositions

We already have the generating function Ue(z , y) for upper half-plane walks,
with z tracking length and y tracking endpoint height.

Define B(z , y) and I (z , y) for bridges and irreducible bridges. (Endpoint and
uppermost point are the same thing.)

Finally, introduce C e(z , y) for full-plane SAWs. Because the endpoint can be
lower than the starting point, the coefficient of zn is a Laurent polynomial in y .
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Use well-known existing decompositions, but have to account for the second
variable y .

Any full-plane SAW can be split into two half-plane SAWs, with the direction of
one reversed:

Thus
C e(z , y) ≤ Ue(x , y)Ue(x , 1/y)
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Every half-plane SAW can be decomposed as a sequence of bridges which
alternate direction and decrease in height:

So

Ue(z , y) ≤
∏
h≥1

1 + (yh + y−h)
∑
n≥1

bn(h)zn


where bn(h) is the number of bridges of length n and height h.

Using 1 + x ≤ ex , get
Ue(z , y) ≤ eB(z,y)+B(z,1/y)
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Combining,
C e(z , y) ≤ e2(B(z,y)+B(z,1/y))

Finally, since every bridge can be written uniquely as a concatenation of
irreducible bridges, we have

B(z , y) =
I (z , y)

1− I (z , y)
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Divergence of generating functions (sketch)

C e(z , y) diverges at its critical point, zec (y), for the same reason as C(z)
(submultiplicativity):

C e
m+n(y) ≤ C e

m(y)C e
n (y)

so C e
n (y) ≥ µe(y)n where µe(y) = zec (y)−1.

Then for y ≥ 1, Ue(z , y) must have the same critical point zeu (y) = zec (y), and
diverge there. The same then goes for B(z , y). (In both cases it’s not the 1/y
function, because both Ue(z , y) and B(z , y) are strictly increasing in y .)

But the only way that B(z , y) can diverge is if I (z , y) = 1.

I (z , y) = zy + 2z6y 2 + O(z7) is strictly increasing with y . So as y increases
beyond y = 1, the solution to I (z , y) = 1 must decrease.

So zec (y) = zeu (y) is strictly decreasing for y > 1, and hence y e
c = 1.
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Further results

Can further complete the picture by relating the critical points for the different
objects in the y < 1 and y > 1 regimes.

Can be extended to self-avoiding polygons pulled at a vertex opposite the
starting point.

Values of the critical exponents have been conjectured for some objects in
some regimes: full- and half-plane walks for all values of y , bridges for y ≥ 1.
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Pushing at the top

When the force is applied at the topmost vertex(s), the phase diagram is
(probably) qualitatively the same, and the free energy κt(a, y) may be exactly
the same as κe(a, y).

When y > 1, there is little or no difference between the two: walks (and
bridges) are ballistic, so the endpoint is at/near the top anyway. Critical
exponents should be the same.

When y < 1, however, things are very different:

pushing at end pushing at top
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When pushing at the endpoint, both ends must be near the surface but the rest
of the walk has a lot of freedom.

⇒ different critical exponent for y < 1, y = 1 and y > 1.

When pushing at the top, the whole walk must be near the surface.
⇒ much stronger restriction.

Pushing at the top looks like restricting walks to a strip of finite height, so we
might even expect the critical point (and hence the growth rate µt

u(y)) to
change.

But walks with large height, even though they are heavily penalised, still
contribute enough to keep the growth rate at constant µ.
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Instead, a new factor appears in the asymptotics of U t
n(y).

Numerical series analysis suggests that for y < 1,

U t
n(y) ∼ A(y)nγ

′−1µnτ(y)n
σ

,

where τ(y) < 1 and σ ≈ 0.42.

Greg Lawler has (tentatively) conjectured that σ = 3/7 using SLE arguments.

Similar for bridges when y < 1.

Resembles the conjectured asymptotics for collapsing partially directed walks
(there, σ = 1/2) [Brak, Owczarek, Prellberg 1993].
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Pushing Dyck paths

Try looking at a much simpler model to see if we observe the same behaviour.

Dyck paths take north-east (1, 1) or south-east (1,−1) steps, start and end on
the surface, and remain above the surface.

Use z to track half-length (length is always even) and y to track height, as
before. Then the generating function D(z , y) can be computed in several ways.

Unfortunately, extracting detailed information from the generating function for
y < 1 proves to be very difficult.
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However, can use it to calculate the free energy λd(y) exactly:

λd(y) = log

({
4 if y ≤ 1
(y+1)2

y
if y > 1

)

For y > 1, the partition function is asymptotically

Dn(y) ∼ (y − 1)3

y(y + 1)2
·
(

(y + 1)2

y

)n
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For y < 1, Robin Pemantle and Brendan McKay use the fact that Dyck paths
become reflected Brownian bridges in the scaling limit. If the distribution of
the heights tends to a Gaussian, this can be asymptotically approximated and
integrated. They obtain

Dn(y) = A(y)n−5/64nτ(y)n
1/3

(1 + O(n−1/3)),

where

A(y) = (1− y)25/33−1/2π5/6e2r

τ(y) = exp(−3× 2−2/3π2/3r 2/3)

and r = − log y .

Matches numerical analyses of 2500-term series.

Further asymptotic terms can be calculated using the same method.
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Future work

Complete the phase diagram picture for endpoint pulling when surface a 6= 1.
Is it really the same for top-pulling?

On the honeycomb lattice, ac is known exactly. Can other parts of the phase
diagram be calculated exactly?

What kind of singularity leads to the y < 1 asymptotics for top-pushed SAWs
and Dyck paths? Results are known for τ n

σ

when τ > 1, but we have τ(y) < 1.

This can all be repeated with a penetrable surface. Still have y e
c = 1, but the

surface weight a is quite different.
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Thank you!
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