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Introduction

A self-avoiding walk (SAW) is a walk on a lattice which cannot revisit vertices.

For a given lattice, cn is the number of n-step SAWs (up to translation).
eg. square lattice:

c0 = 1

c1 = 4

c2 = 12

c3 = 36

c4 = 100, . . .
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For regular lattices in d ≥ 2, no known expression for cn. But we still know something!

Any SAW of length m + n can be split into two smaller SAWs, of lengths m and n. So

cm+n ≤ cmcn.

So {cn} is a sub-multiplicative sequence. Then

log cm+n ≤ log cm + log cm,

so {log cn} is a sub-additive sequence. It follows that the limit

logµ = lim
n→∞

1

n
log cn

exists. logµ is called the connective constant of the lattice. Then

cn ∼ θnµn,

where µ is called the growth constant (sometimes connective constant) and θn = eo(n).
By submultiplicativity, we know that θn ≥ 1.
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On the square lattice, the best estimate for µ is 2.63815853031.

Subexponential factors unproven, but

Conjecture (Nienhuis 1982)

cn ∼ Anγ−1µn

for A, µ, γ constant. A and µ are lattice-dependent, γ depends only on dimension. In two
dimensions, γ = 43/32.

In high dimensions, can do a bit better:

Theorem (Hara and Slade 1992)

On the hypercubic lattice in five or more dimensions,

cn ∼ Aµn.
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Also interested in the size and shape of SAWs. eg. let 〈R2
e 〉n be the mean-squared

end-to-end distance of SAWs of length n.

Conjecture (Nienhuis 1982; Lawler, Schramm and Werner 2004)

〈R2
e 〉n ∼ Cn2ν

with C lattice-dependent and ν dimension-dependent. In two dimensions, ν = 3/4.

The exponents γ and ν are also connected to the scaling limit of SAWs:

Conjecture (Lawler, Schramm and Werner 2004)

Self-avoiding walks have a conformally invariant scaling limit, namely SLE8/3.
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Generating functions

The (ordinary) generating function for {cn} is

C(z) =
∑
n≥0

cnz
n

Then zc = 1/µ is the radius of convergence of C(z). In general, expect the behaviour
near zc to be

C(z) ∼ const.(1− z/zc)−γ ,

which leads to cn ∼ Anγ−1µn.

Because cn ≥ µn,

C(z) ≥
∑
n≥0

µnzn =
1

1− zµ

So
C(z)→∞ as z → z−c .

Expect that C(z) is non-D-finite, ie. does not satisfy a linear ODE with polynomial
coefficients.
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Polymer models

SAWs are an important model in statistical mechanics of linear polymers in a solvent:
chains of monomers, connected by bonds of fixed length and at fixed angles.

Unlike random walks (another, simpler model), SAWs encapsulate the excluded volume
principle: two different monomers can’t occupy the same point in space.

Monomers in a polymer can interact with each other, other polymers, surfaces (both
penetrable and impenetrable) or with other external agents. Usually, these interactions
are either attractive or repulsive.

Can also model forces applied to the polymer at various points/directions.
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Compressive force

The model we are interested in here is a polymer between two impenetrable plates, being
compressed together.

Take walks in the upper half-plane, starting at the origin. For a walk γ which reaches
maximum height h(γ) above the surface, associate a Boltzmann weight e−f ·h(γ).

So the walk above receives weight e−3f .
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The partition function of walks of length n is then

Zn(f ) =
∑
|γ|=n

e−f ·h(γ)

and the free energy is

λ(f ) = lim
n→∞

1

n
logZn(f )

which can be shown to exist for all f .

f > 0 represents a force pushing down towards the surface. f < 0 represents a force
pulling away from the surface. When f is large and positive, walks with small h(γ)
dominate the partition function. When f is large and negative, walks with large h(γ)
dominate.
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λ(f ) is a continuous, convex function of f , and is almost-everywhere differentiable.

It has been proven [NRB 2015] that λ(f ) has a point of non-analyticity at f = 0: it is
strictly decreasing for f < 0, but λ(f ) = logµ for f ≥ 0:

- 4 - 3 - 2 - 1 0 1 2 3

0.5

1.0
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2.0

2.5

3.0

0
f

λ(f )

logµ

This indicates a phase transition at f = 0.
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However, this behaviour is slightly puzzling. No matter how large we make f (favouring
walks which stay close to the surface, and punishing those which wander away), λ(f )
remains constant and equal to its value at f = 0.

Might expect that as f →∞, only the walks which stick to the surface “survive”, which
would mean λ(f )→ 0. So what’s going on?

λ(f ) only captures the exponential behaviour of Zn(f ). ie.

Zn(f ) ∼ θn(f ) exp{λ(f ) · n}

It is the subexponential term θn(f ) where the interesting stuff happens!

Note:

Conjecture

Zn(0) ∼ Cn−3/64µn

for a constant C.

For f < 0, expect that θn(f ) does not depend on n.
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Random walks

Figuring out what θn(f ) looks like is hard – uses lots of SLE, probability, etc...

But we can instead look at random (not self-avoiding) walks, and get a similar result!

Now have partition functions Rn(f ), summed over all random walks of length n. Then
the free energy ρ(f ) looks similar to λ(f ), but with logµ replaced by log 4. There is still
a phase transition at f = 0.

Easy to show

Theorem

Rn(0) ∼ 2√
π
n−1/24n
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In a horizontal strip of height h − 2, let cn(h, r , s) be the number of n-step walks which
start at height r and end at height s, with 0 ≤ r , s ≤ h− 2. Then, because random walks
are Markovian, cn(h, r , s) = K n

h (r , s), where Kh is the (h− 1)× (h− 1) symmetric matrix
with

Kh(r , r) = 2, Kh(r , r ± 1) = 1.

Let Jh = 1
4
Kh. Jh is tridiagonal and Toeplitz, so it is (with a change of variables) the

Jacobi matrix for Chebyshev polynomials.

Lemma

det(Jh − λI ) = 4−h+1Uh−1(1− 2λ),

where Ui (x) are Chebyshev polynomials of the second kind:

U0(x) = 1

U1(x) = 2x

Ui+1(x) = 2xUi (x)− Ui−1(x)

The roots of Ui (x) are well known:

xk = cos

(
kπ

i + 1

)
for k = 1, . . . , i .
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Eigenvalues and eigenvectors:
Jhvj = λjvj

with

λj =
1

2
+

1

2
cos

(
jπ

h

)
and vj =

{
sin

(
j(k + 1)π

h

)}
k=0,...,h−2

Eigendecomposition:

Jn
h (r , s) =

2

h

h−1∑
j=1

sin

(
j(r + 1)π

h

)[
1

2
+

1

2
cos

(
jπ

h

)]n
sin

(
j(s + 1)π

h

)

If n, h→∞ with h2 � n, then j = 1 term dominates, so

Jn
h (r , s) ∼ 2

h

[
1

2
+

1

2
cos
(π
h

)]n
sin

(
(r + 1)π

h

)
sin

(
(s + 1)π

h

)
∼ 2

h
exp

{
−nπ2

4h2

}
sin

(
(r + 1)π

h

)
sin

(
(s + 1)π

h

)
In particular, we want walk to start at height 0, so

Jn
h (0, s) ∼ 2π

h2
exp

{
−nπ2

4h2

}
sin

(
(s + 1)π

h

)
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Can end at any height between 0 and h − 2, so define

Fn(h) =
h−2∑
s=0

Jn
h (0, s) ∼ 4

h
exp

{
−nπ2

4h2

}
for h2 � n

Now Fn(h) is the probability that a SRW in Z2 of length n has ordinate between 0 and
h − 2 for its entire length.

So Fn(h + 2)− Fn(h + 1) is the probability that a SRW has ordinate between 0 and h for
its entire length and reaches h at some point.

So the partition function Rn(f ) is

Rn(f ) = 4n
∞∑
h=0

e−fh [Fn(h + 2)− Fn(h + 1)]

= 4ne2f (1− e−f )
∞∑
h=2

e−fhFn(h)

∼ 4n+1e2f (1− e−f )
∞∑
h=2

e−fhh−1 exp

{
−nπ2

4h2

}
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Convert sum to integral:

∼ 4n+1e2f (1− e−f )

∫ ∞
0

x−1 exp

{
−
(
nπ2

4x2
+ fx

)}
dx

The asymptotics of this integral can be computed (with care). Get

Theorem

Rn(f ) ∼ A · 4n · n−1/6 · f −1/3e f (e f − 1) · exp
{
B · n1/3 · f 2/3

}
for f > 0

for known constants A and B.

Exponential term is still 4n with power-law correction n−1/6, but now there is a
“stretched exponential” term of the form exp{c · n1/3}.

This matches series analysis.

Nicholas Beaton (Saskatchewan) Compressed walks August 2015 16 / 19



Convert sum to integral:

∼ 4n+1e2f (1− e−f )

∫ ∞
0

x−1 exp

{
−
(
nπ2

4x2
+ fx

)}
dx

The asymptotics of this integral can be computed (with care). Get

Theorem

Rn(f ) ∼ A · 4n · n−1/6 · f −1/3e f (e f − 1) · exp
{
B · n1/3 · f 2/3

}
for f > 0

for known constants A and B.

Exponential term is still 4n with power-law correction n−1/6, but now there is a
“stretched exponential” term of the form exp{c · n1/3}.

This matches series analysis.

Nicholas Beaton (Saskatchewan) Compressed walks August 2015 16 / 19



Convert sum to integral:

∼ 4n+1e2f (1− e−f )

∫ ∞
0

x−1 exp

{
−
(
nπ2

4x2
+ fx

)}
dx

The asymptotics of this integral can be computed (with care). Get

Theorem

Rn(f ) ∼ A · 4n · n−1/6 · f −1/3e f (e f − 1) · exp
{
B · n1/3 · f 2/3

}
for f > 0

for known constants A and B.

Exponential term is still 4n with power-law correction n−1/6, but now there is a
“stretched exponential” term of the form exp{c · n1/3}.

This matches series analysis.

Nicholas Beaton (Saskatchewan) Compressed walks August 2015 16 / 19



Convert sum to integral:

∼ 4n+1e2f (1− e−f )

∫ ∞
0

x−1 exp

{
−
(
nπ2

4x2
+ fx

)}
dx

The asymptotics of this integral can be computed (with care). Get

Theorem

Rn(f ) ∼ A · 4n · n−1/6 · f −1/3e f (e f − 1) · exp
{
B · n1/3 · f 2/3

}
for f > 0

for known constants A and B.

Exponential term is still 4n with power-law correction n−1/6, but now there is a
“stretched exponential” term of the form exp{c · n1/3}.

This matches series analysis.

Nicholas Beaton (Saskatchewan) Compressed walks August 2015 16 / 19



Back to SAWS

Can use SLE to estimate the probability that a SAW stays in a strip of height h. Get a
similar integral, and use the same method to compute the asymptotics.

Conjecture

Zn(f ) ∼ A · µn · n3/16 · f 5/16 · exp
{
B · n3/7 · f 4/7

}
for f > 0

for constants A,B.

Again, matches series analysis.
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Unusual asymptotics

Similar results are conjectured for compressed self-avoiding bridges and polygons.

These asymptotics are unusual for models like this. Something similar is conjectured to
occur in a model of polymer collapse, with a subexponential term like exp{c · n1/2}.
[Owczarek, Prellberg & Brak 1993]

A term like exp{c · n1/2} has also now been observed in the asymptotics of 1324-avoiding
permutations [Conway & Guttmann 2014].

Unclear why such terms appear for some models but not others.
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Reference:
NRB, A J Guttmann, I Jensen and G F Lawler, Compressed self-avoiding walks, bridges
and polygons, submitted, preprint at arXiv:1506:00296

Thank you!

Nicholas Beaton (Saskatchewan) Compressed walks August 2015 19 / 19



Reference:
NRB, A J Guttmann, I Jensen and G F Lawler, Compressed self-avoiding walks, bridges
and polygons, submitted, preprint at arXiv:1506:00296

Thank you!

Nicholas Beaton (Saskatchewan) Compressed walks August 2015 19 / 19


