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Abstract
Recently, Duminil-Copin and Smirnov proved a long-standing conjecture of
Nienhuis that the connective constant of self-avoiding walks (SAWs) on the
honeycomb lattice is

√
2 + √

2. A key identity used in that proof depends
on the existence of a parafermionic observable for SAWs on the honeycomb
lattice. Despite the absence of a corresponding observable for SAWs on the
square and triangular lattices, we show that in the limit of large lattices,
some of the consequences observed on the honeycomb lattice persist on other
lattices. This permits the accurate estimation, though not an exact evaluation,
of certain critical amplitudes, as well as critical points, for these lattices. For
the honeycomb lattice, an exact amplitude for loops is proved.

PACS numbers: 05.50.+q, 05.10.−a

(Some figures may appear in colour only in the online journal)

1. Introduction

In 2010, Duminil-Copin and Smirnov [6] proved that the critical point of honeycomb lattice
self-avoiding walks (SAWs) is zc = 1/

√
2 + √

2, as conjectured by Nienhuis [17]. Their proof
rested on establishing a connection between three generating functions for walks in a regular
trapezoidal sublattice ST,L of the honeycomb lattice, as shown in figure 1, of width T and
left-height 2L. All walks start on the half-edge a incident on the left wall labelled α.

They first identified a parafermionic observable:

F(x) =
∑

ω⊂S:a→x

e−iσWω(a,x)zl(ω).

Here, x is a point (specifically, the mid-point between two adjacent vertices) in the domain,
σ ∈ R, z � 0, and ω is a path starting at half-edge a and finishing at point x. l(ω) is the length
of the path and Wω(a, x) is the winding, or total rotation in radians, when ω is traversed from
a to x.

1751-8113/12/035201+18$33.00 © 2012 IOP Publishing Ltd Printed in the UK & the USA 1
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Figure 1. Finite patch S3,1 of the honeycomb lattice. Paths run from mid-edge to mid-edge
acquiring a weight z for each step. The paths start on the central mid-edge of the left boundary
(shown as a).

In the special case z = zc = 1/
√

2 + √
2 and σ = 5/8, F satisfies half of the discrete

Cauchy–Riemann equations [19],

(p − v)F(p) + (y − v)F(q) + (r − v)F(r) = 0, (1)

where p, q, r are the mid-edges of the three edges incident on vertex v.

By summing (1) over all vertices in ST,L, contributions from interior mid-edges cancel
and we are left with a relation involving only mid-edges on the boundary of ST,L. Walks from
half-edge a to the boundary fall into three classes, depending on which boundary edge they
terminate at. This observation gives rise to the following three generating functions:

AT,L(z) :=
∑

γ⊂ST,L

a→α/{a}

z�(γ ),

BT,L(z) :=
∑

γ⊂ST,L

a→β

z�(γ ),

ET,L(z) :=
∑

γ⊂ST,L

a→ε∪ε̄

z�(γ ),

where the sums are over all self-avoiding walks from a to the α, β or ε, ε̄ boundaries,
respectively.

Duminil-Copin and Smirnov showed that the relation involving boundary mid-edges can
be written in the form

1 = cos

(
3π

8

)
AT,L(zc) + cos

(π

4

)
ET,L(zc) + BT,L(zc). (2)

2
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Taking the limit L → ∞, this becomes

1 = cos

(
3π

8

)
AT (zc) + cos

(π

4

)
ET (zc) + BT (zc). (3)

This is now a relation linking three generating functions for SAWs in a strip of width T.

Duminil-Copin and Smirnov then used this to prove Nienhuis’s conjecture.
In [2], it was proved that ET (zc) = 0, so (3) can in fact be simplified to

1 = cos

(
3π

8

)
AT (zc) + BT (zc). (4)

This modification slightly simplifies the proof of Duminil-Copin and Smirnov.
This simpler identity, involving just two generating functions, raises the question as to

its applicability to other two-dimensional lattices, such as the square and triangular lattices.
However, it should be remarked that the critical points are not known exactly for these lattices,
though high precision numerical estimates are available. The proof of Duminil-Copin and
Smirnov identifying the critical point cannot be repeated for these lattices, as there is no
known appropriate parafermionic observable satisfying an identity like (1). As shown by
Ikhlef and Cardy [10], the dilute O(n) model on the square lattice does have a parafermionic
observable, and this can be used to identify its critical point. In the n → 0 limit, however,
that model is not the usual SAW model. For the triangular lattice we know of no appropriate
parafermionic observable.

However, leaving aside considerations of discrete holomorphicity and the existence of
parafermions, and motivated by a more detailed study of the width (T ) dependence of the two
generating functions AT (z) and BT (z), we investigated which features of the identity (4) carry
over to other two-dimensional lattices.

We did this by calculating data for the generating functions AT (z) and BT (z) in strips, for
T � 10 on the honeycomb lattice, for T � 15 on the square lattice and for T � 11 on the
triangular lattice. In figure 2, we show a plot of cos(3π/8)AT (z)+ BT (z) for T ∈ [1, . . . , 10],
on the honeycomb lattice, showing the intersection of all curves at (zc, 1), as expected
from (4).

When we repeated this calculation using the square and triangular lattice data, we found
that there was no unique point of intersection, though the discrepancy was too small to be
visible on a plot such as figure 2. Instead we observed a definite monotonic width dependence,
described in greater detail below. We first investigated a more general form of (4), allowing
the ‘constants’ to be width dependent. That is to say, we assumed

1 = cα(T )AT (zc) + cβ (T )BT (zc).

We fitted successive pairs of points (AT (zc), BT (zc)) and (AT+1(zc), BT+1(zc)) in order
to estimate cα(T ) and cβ (T ) and found a weak T dependence in both ‘constants’. More
significantly, however, we conjecture that

lim
T→∞

cα(T )/cβ (T ) = cos(3π/8),

just as in the honeycomb lattice case, based on agreement to more than five significant digits
for both the square and the triangular lattices. In hindsight, this is perhaps not too surprising,
as the constants multiplying the two generating functions arise from the winding angle of
contributing graphs, and these are independent of lattice for the two generating functions
considered, being ±π rad for A(z) and 0 for B(z).

Assuming that this ratio is indeed cos(3π/8) for all lattices, we re-analysed the data with
this assumption implicit. That is to say, we fitted the data to

c(T ) = cos(3π/8)AT (zc) + BT (zc).

3



J. Phys. A: Math. Theor. 45 (2012) 035201 N R Beaton et al

0 0.1 0.2 0.3 0.4 0.5 0.6
z

0

0.5

1.0

1.5

2.0

co
s(

3π
/8

)A
T
(z

)+
B

T
(z

)

0.54115 0.54120 0.54125
0.996

0.998

1.000

1.002

1.004

Figure 2. Plot of cos(3π/8)AT (z)+BT (z) for T ∈ [1, . . . , 10], for the honeycomb lattice, showing
interception of all curves at (zc, 1). The inset shows a close-up of the region of interception.

We were able to estimate both the limit limT→∞ c(T ), which is of course lattice dependent,
and also the nature of the T dependence. Putting all this together, we estimated for the square
lattice

1.024 966(1 − 0.14/T 2) ≈ cos(3π/8)AT (zc) + BT (zc). (5)

For the triangular lattice, the corresponding result is

1.901 979(1 − 0.1/T 2) ≈ cos(3π/8)AT (zc) + BT (zc). (6)

The leading constant is expected to be sufficiently accurate so as to restrict errors to one or
two places in the last quoted digit. The correction term is given as O(1/T 2) but that exponent
is a guess based an a numerical estimate in the range (1.9, 2.1). Finally, the magnitude of that
term is claimed to be accurate only to 10–20%.

This limiting behaviour as T → ∞ suggests a new numerical method for estimating the
critical point. For the honeycomb lattice, the intersection point of cos(3π/8)AT (z)+BT (z) for
any two distinct values of T uniquely determines zc. For the square and triangular lattices, we
instead looked at the intersection point of cos(3π/8)AT (z) + BT (z) and cos(3π/8)AT+1(z) +
BT+1(z). Call this intersection point zc(T ). Then, one expects limT→∞ zc(T ) = zc.

In this way, we estimated

zc = 0.379 052 2775 ± 0.000 000 0005

for the square lattice and

zc = 0.240 917 572 ± 0.000 000 005

for the triangular lattice. These estimates can be compared to the best series estimates, based
on the analysis of very long polygon series, which are zc(sq) = 0.379 052 277 76 [11, 12], with
uncertainty in the last digit, and zc(tr) = 0.240 917 5745 [14], with the similar uncertainty.

4
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Another result proved by Beaton, de Gier and Guttmann [2] is that limT→∞ BT (z) =
B(z) = 0 for z � zc. This means that, in this limit, the identity (4) further simplifies to

1 = cos(3π/8)A(zc), (7)

where A(z) = limT→∞ AT (z). Now A(z) is the generating function for loops (half-plane walks
which begin and end on the boundary), which is expected to behave [9] as

A(z) ∼ a0 + a1(1 − z/zc)
3/16,

so (7) implies an exact value for the critical amplitude:

a0 = 1/ cos(3π/8).

Correspondingly, highly accurate predictions for this amplitude for the square and triangular
lattices follow from (5) and (6), notably

a0(sq) ≈ 1.024 966/ cos(3π/8) = 2.678 365

and

a0(tr) ≈ 1.901 979/ cos(3π/8) = 4.970 111.

We remark that, as discussed below, we have normalized these generating functions differently
for these two lattices, so please note details of the normalization before using these estimates.

Finally, we studied the behaviour of the two generating functions as T → ∞. We found
BT (z) ∼ const/T α, where α ≈ 0.25. This is precisely as predicted in [6], based on conjectures
of Lawler et al [15] as to the number of SAWs on the boundary of a domain. In [6], it was
pointed out that the conjecture implies that BT (zc) should decay as T −1/4 as T goes to infinity,
just as we observed.

Similarly, we can investigate how ÃT (zc) = AT (zc) − a0 decays as T tends to infinity.
From (4) it follows that ÃT (zc) also decays like T −1/4 and this was observed numerically.

2. Honeycomb lattice

The original identity of Duminil-Copin and Smirnov related three distinct generating functions
for SAWs in a finite domain. Letting the length L of the domain become unbounded changes
the domain into a strip of finite width T. As proved in [2], the generating function ET (z)
vanishes identically in that limit, so one has an identity relating two generating functions:

1 = cos(3π/8)AT (zc) + BT (zc). (8)

The generating functions AT (z) and BT (z) for T finite are rational. For example,

A0(z) = 2z3

1 − z2
, B0(z) = 2z2

1 − z2
,

A1(z) = 2z3
(
1 − z2 + z4 + 3z6 − 4z8 + z12

)
(
1 − z4

)2 (
1 − 2z2 + z4 − z6

) ,

B1(z) = 2z4
(
2 − 4z4 + 2z6 + 2z8 − z10

)
(
1 − z4

)2 (
1 − 2z2 + z4 − z6

) ,

A2(z) = PA
2 (z)

Q2(z)
, B2(z) = PB

2 (z)

Q2(z)
, where

5
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PA
2 (z) = 2(z3 − 4z5 + 7z7 − 7z9 + 9z11 + 2z13 − 31z15 + 39z17 − 46z19 + 68z21

− 75z23 + 74z25 − 61z27 + 41z29 − 20z31 + z33 + 6z35 − 4z37 + z39),

PB
2 (z) = 2z6(1 − z2)(4 − 4z2 − 8z4 + 8z6 − 4z8 + 16z10 − 12z12 + 18z14

− 10z16 + 3z18 − 3z20 − 4z22 + 10z24 − 10z26 + 5z28 − z30),

Q2(z) = (1 − z2 − z4 + z6 − z8)2

× (1 − 3z2 + 3z4 − 5z6 + 8z8 − 9z10 + 7z12 − 8z14 + 8z16 − 5z18 + 3z20 − z22).

These generating functions have simple poles, the dominant pole being at z = zc(T ) >

zc(T + 1) > zc. Furthermore, limT→∞ zc(T ) = zc [18].
Duminil-Copin and Smirnov proved that the unique solution of

cos(3π/8)AT (z) + BT (z) = 1, (9)

for any T � 0, occurs at z = zc = 1/
√

2 + √
2. It follows then that we could work backwards:

given only the simple rational generating functions A0(z) and B0(z), we could identify the
exact value of zc simply by seeking the solution of

cos(3π/8)A0(z) + B0(z) = 1.

If we did not already know zc, this would be a particularly simple way to find it.
In a further demonstration of this invariant, we show in figure 2 a plot of cos(3π/8)AT (z)+

BT (z) for T ∈ [1, . . . , 10], where it can be seen that the curves intersect at (zc, 1), in accordance
with the identity (8).

Let us assume that we did not even know the Duminil-Copin and Smirnov identity (8),
but rather just conjectured that some linear combination of AT (zc) and BT (zc) was invariant.
We write this invariant as λAT (zc) + BT (zc). Then, by seeking the solutions, for z > 0, λ > 0
of the equations

λA0(z) + B0(z) − λA1(z) − B1(z) = 0

and

λA2(z) + B2(z) − λA1(z) − B1(z) = 0,

we could discover both the invariant and the exact value of the critical point from the exact
solutions for strips of width 0, 1 and 2 given above.

As we show below, this suggests a way to approximate zc for other lattices by similar
means. We first show that, for other lattices, an appropriate linear combination of AT (z) and
BT (z) approaches a limit as T → ∞ and use this observation to estimate the critical point for
the square and triangular lattices.

Letting the width go to infinity, another of the generating functions, B(z), vanishes [2],
and the identity reduces to A(zc) = 1/ cos(3π/8). Recall that A(z) is the generating function
for loops whose asymptotic behaviour is believed to be [9]

A(z) ∼ a0 + a1(1 − z/zc)
3/16.

Thus, the Duminil-Copin–Smirnov identity in the limit L → ∞ and T → ∞ gives us the
exact value for the amplitude term a0 = A(zc) for the honeycomb lattice.

Next we consider the behaviour of the generating functions AT (z) and BT (z) in the limit
T → ∞. Denote limT→∞ BT (z) by B(z), with a similar definition of A(z). Recall that, as

6



J. Phys. A: Math. Theor. 45 (2012) 035201 N R Beaton et al

0 0.05 0.10 0.15 0.20 0.25

1/T
0.85

-0.26

-0.24

-0.22

-0.20

-0.18

-0.16

gr
ad

B
(T

)

Figure 3. Plot of the local gradient of BT (zc) and T against 1/T 0.85. The straight line denotes a
linear fit to the data in the plot.

proved in [2], B(z) = 0 for z � zc. We then wish to understand exactly how BT (zc) → 0 as
T → ∞.

If BT (zc) ∼ const/T α, a log–log plot of BT (zc) against T should be linear with the slope
−α as T → ∞. We only have data for the width T � 10; so the gradient is still changing
slightly with T in that plot. To accommodate this, we extrapolate estimates of the local gradient.
We define the local gradient as

gradB(T ) = log

(
BT (zc)

BT−1(zc)

) /
log

(
T

T − 1

)

and plot gradB(T ) against 1/T 0.85, where the exponent 0.85 was chosen empirically to make
the plot linear. The plot is shown in figure 3, and it is manifestly clear that the locus extrapolates
to a value of α ≈ 1/4. More systematic numerical extrapolation techniques [8] (not detailed
here) lend support to this estimate. This is precisely as predicted [6], based on conjectures of
Lawler, Schramm and Werner [15] as to the number of SAWs on the boundary of a domain.
This is discussed in [6], where it is pointed out that the conjecture implies that BT (zc) should
decay as T −1/4 as T goes to infinity, just as we observe.

From (8), it follows that if BT (zc) ∼ c/T 1/4, then ÃT (zc) = AT (zc) − a0 also decays as
T −1/4, and this was observed numerically by a similar plot to that described in the preceding
paragraph.

3. Square lattice

As discussed above, there is no parafermionic operator that applies to the SAW model on the
square lattice or the triangular lattice, so we cannot identify the critical point for SAWs on

7
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Table 1. The values of AT (z) and BT (z) at the critical point z = zc.

T AT (zc) BT (zc)

1 0.684 928 096 008 073 0.760 082 094 484 555
2 0.825 972 541 624 066 0.707 257 323 612 670
3 0.927 565 166 390 104 0.668 934 606 497 192
4 1.006 072 923 950 508 0.639 202 723 889 591
5 1.069 537 792 384 553 0.615 108 345 881 821
6 1.122 482 001 562 161 0.594 974 760 428 940
7 1.167 689 112 421 950 0.577 763 265 643 123
8 1.206 987 841 982 332 0.562 788 338 725 227
9 1.241 640 411 741 764 0.549 575 210 877 016

10 1.272 552 495 675 558 0.537 782 341 996 967
11 1.300 394 615 482 380 0.527 156 358 502 502
12 1.325 676 196 007 041 0.517 504 450 137 522
13 1.348 792 763 213 512 0.508 676 719 252 903
14 1.370 057 142 972 426 0.500 554 481 834 765
15 1.389 720 731 591 218 0.493 042 273 647 721

these lattices as Duminil-Copin and Smirnov did for honeycomb SAWs. We might, however,
expect that in the limit L → ∞ (so that we are again considering SAWs in a strip) there should
be a similar relationship between the two generating functions AT (z) and BT (z), with some T
dependence that vanishes as T → ∞.

That is to say, while the relationship

1 = cos(3π/8)AT (zc) + BT (zc),

which is an identity for honeycomb lattice SAWs for a finite width T , cannot be expected to
hold for the square and triangular lattices, we might expect something like

1 = cα(T )AT (zc) + cβ (T )BT (zc)

to hold, where the ‘constants’ cα(T ) and cβ (T ) are weakly T dependent.
We have computed data for the square lattice generating functions in strips of width T,

that is, AT (z) and BT (z), for T � 15, and used our best estimate 1/zc = 2.638 158 530 31
[11, 12] to tabulate AT (zc) and BT (zc), shown in table 1. In [6] these generating functions for
the honeycomb lattice were defined to include an extra half-step at the beginning of the walk
and at the end of the walk. This introduces an extra factor of z (or, as appropriate zc) and we
have used this definition of the generating functions AT (z) and BT (z) for the square lattice
data.

We then fitted successive pairs of values (AT (zc), BT (zc)) and (AT+1(zc), BT+1(zc)) for
T = 1, . . . , 14 to

1 = cα(T )AT (zc) + cβ (T )BT (zc)

and solved the associated linear equations for cα(T ) and cβ (T ), using our best estimate of zc.

In figures 4 and 5, we show plots of values of cα(T ) against 1/T 1.15 and cβ (T ) against 1/T 0.85.

We have no basis for assuming that this is the correct form we should choose to extrapolate
these plots; rather, the T dependence was chosen experimentally to give a linear plot.
Extrapolated to T = ∞, we find cα ≈ 0.3734 and cβ ≈ 0.9756. To obtain more precise
estimates, we extrapolated these sequences using the Bulirsch–Stoer algorithm [3]. This
algorithm requires a parameter w which can be thought of as a correction-to-scaling exponent.
For the purpose of the current exercise, we have set this parameter to 1, corresponding
to an analytic correction, which is appropriate for the two-dimensional SAW problem [4].

8
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Figure 4. Plot of cα(T ) against 1/T 1.15 for square lattice A walks. The straight line denotes a
linear fit to the last seven data points in the plot.
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Figure 5. Plot of cβ (T ) against 1/T 0.85 for square lattice B walks. The straight line denotes a
linear fit to the last seven data points in the plot.
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Our implementation of the algorithm is precisely as described by Monroe [16], and we
retained 40 digit precision throughout. We also applied a range of standard extrapolation
algorithms to the sequences {cα(T )} and {cβ (T )}. These were Levin’s u-transform, Brezinski’s
θ algorithm, Neville tables, Wynn’s ε algorithm and the Barber–Hamer algorithm [1].
Descriptions of these algorithms, and codes for their implementation, can be found in [8].
These gave results totally consistent with, but less precise than, those from the Bulirsch–Stoer
algorithm.

In this way, we estimated cα = 0.373 362 ± 0.000 001 and cβ = 0.975 644 ± 0.000 002.

Thus the ratio cα/cβ = 0.382 683(2). For the honeycomb lattice the corresponding ratio
is cos(3π/8) = 0.382 6834 . . . , which is close to, and probably equal to, the square lattice
value. We shall see in the next section that this apparent agreement also holds for the triangular
lattice.

Assuming that cα/cβ = cos(3π/8) for the square lattice, we calculated elements of the
sequence cos(3π/8)AT (zc) + BT (zc) and extrapolated these using the same extrapolation
method as described above. We found the limit of the sequence to be 1.024 966 ± 0.000 001,

compared to a value of exactly 1 for the honeycomb lattice. Using this estimate, we
plotted log(cos(3π/8)AT (zc) + BT (zc) − 1.024 966) against log T. The plot displayed slight
curvature; so we plotted the local gradient

log

(
cos(3π/8)AT (zc) + BT (zc) − 1.024 966

cos(3π/8)AT−1(zc) + BT−1(zc) − 1.024 966

) /
log

(
T

T − 1

)

against 1/T. This extrapolated to a value in the range (1.9, 2.1); so we took the central value

and concluded that 1.024 966 − c1
T 2 ≈ cos(3π/8)AT (zc)+ BT (zc) is the asymptotic behaviour.

Finally, extrapolating estimates of the constant c1, we estimate c1 ≈ 0.14 ± 0.02. Our final
result is

1.024 966 − 0.14

T 2
≈ cos(3π/8)AT (zc) + BT (zc),

which is an accurate mnemonic for square lattice strips.
For the honeycomb lattice, it has been proved [2] that limT→∞ BT (zc) = B(zc) = 0.

The proof applies mutatis mutandis to the square and triangular lattices. Thus in the limit of
infinite strip width we find 1 ≈ 0.373 3621A(zc), giving a prediction for the critical amplitude
A(zc) ≈ 2.678 365. Current series estimates (unpublished) are 2.66 ± 0.03, some four orders
of magnitude less accurate than this new estimate.

For the honeycomb lattice, the intersection point of cos(3π/8)AT (z)+ BT (z) for any two
distinct values of T uniquely determines zc. For the square and triangular lattices, we instead
looked at the intersection point of cos(3π/8)AT (z)+BT (z) and cos(3π/8)AT+1(z)+BT+1(z).
Call this intersection point zc(T ). Then, one expects limT→∞ zc(T ) = zc. We extrapolated the
sequence {zc(T )} using the same Bulirsch–Stoer method described above, and in this way, we
estimated

zc = 0.379 052 2775 ± 0.000 000 0005.

This estimate can be compared to the best series estimates, based on the analysis of very long
polygon series, zc(sq) = 0.379 052 277 76 [11, 12], with uncertainty in the last digit. Thus,
this method is seen to be a powerful new method for estimating critical points, giving very
good accuracy, though it does not rival the most powerful methods based on the series analysis
of polygon series. However, it does give comparable accuracy to methods based on the series
analysis of SAWs (rather than self-avoiding polygons (SAPs)).

10



J. Phys. A: Math. Theor. 45 (2012) 035201 N R Beaton et al

0 0.05 0.10 0.15 0.20 0.25

1/T
0.85

-0.26

-0.24

-0.22

-0.20

-0.18

gr
ad

B
(T

)

Figure 6. Plot of gradB(T ) against 1/T 0.85 for square lattice B walks. The straight line denotes a
linear fit to the last seven data points in the plot. Linear extrapolation to −0.25 is well supported.

3.1. T dependence of the generating functions AT (zc) and BT (zc)

As for the honeycomb lattice, we expect BT (zc) ∼ const/T 1/4. In figure 6, we have plotted
estimates of the exponent

gradB(T ) = log

(
BT (zc)

BT−1(zc)

) /
log

(
T

T − 1

)

against 1/T 0.85. This local gradient should approach −1/4 and from the plot is seen to do so.
As for the honeycomb lattice, from (8) it follows that if BT (zc) ∼ const/T 1/4, then

ÃT (zc) = AT (zc) − a0 also decays as T −1/4. This was observed numerically by a similar plot
to that described in the preceding paragraph.

3.2. Alternative estimate of the critical point

We showed in section 2 that the critical point could be identified just from knowledge of the
invariant (8) and the formulae for A0(z) and B0(z). In the case of the square lattice, we expect
the simultaneous solution of the pair of equations

λAT−1(z) + BT−1(z) − λAT (z) − BT (z) = 0

and

λAT (z) + BT (z) − λAT+1(z) − BT+1(z) = 0

to give a sequence of estimates of zc(T ) that should converge to the critical point zc. Similarly,
the parameter λ should converge to the ratio cα/cβ = cos(3π/8). The merit of this method
of estimating the critical point is that it makes no assumption about the value of λ, while the
method of estimating the critical point described in section 3 assumes that λ = cos(3π/8).

11
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Table 2. Estimates of zc(T ) and λ(T ) for the square lattice.

T zc(T ) λ(T )

2 0.379 213 251 099 6564 0.368 086 501 616 0631
3 0.379 135 427 580 2486 0.372 495 704 364 6600
4 0.379 101 458 721 2902 0.375 032 777 979 0171
5 0.379 083 764 984 1775 0.376 692 160 796 3391
6 0.379 073 617 716 1640 0.377 847 366 551 0655
7 0.379 067 389 603 7665 0.378 686 839 260 6266
8 0.379 063 360 259 6354 0.379 317 622 909 3515
9 0.379 060 640 619 0476 0.379 804 622 288 1576

10 0.379 058 739 886 2656 0.380 189 141 544 0993
11 0.379 057 372 178 2793 0.380 498 524 927 9112
12 0.379 056 363 351 5162 0.380 751 485 962 1669
13 0.379 055 603 233 4455 0.380 961 199 086 9139
14 0.379 055 019 822 686 0.381 137 168 185 8631

Table 3. Estimates of AT (zc) and BT (zc) for various strip widths for the triangular lattice.

T AT (zc) BT (zc)

1 1.139 480 549 210 468 1.457 161 363 236 105
2 1.435 344 242 350 752 1.348 134 252 648 887
3 1.641 756 149 326 264 1.270 897 362 392 145
4 1.798 515 045 521 241 1.211 810 836 367 619
5 1.923 848 231 267 622 1.164 374 555 192 450
6 2.027 608 945 103 857 1.125 001 488 941 636
7 2.115 709 764 900 265 1.091 512 525 007 183
8 2.191 966 367 371 986 1.062 490 013 670 246
9 2.258 977 760 090 717 1.036 962 918 106 255

10 2.318 589 791 981 952 1.014 238 779 515 961
11 2.372 157 936 598 986 0.993 807 536 013 206

We solved these equations by seeking the solution of

(AT−1(z) − AT (z))(BT+1(z) − BT (z)) = (AT (z) − AT+1(z))(BT (z) − BT−1(z)),

which we call zc(T ), and then found λ(T ) by back substitution. The results are shown in
table 2.

We plotted (not shown) the estimates of zc(T ), against various powers of 1/T, and found
a linear plot if we plotted against 1/T 2. We extrapolated the estimates zc(T ) for steadily
increasing T values using the same Bulirsch–Stoer extrapolation method described above.
Rapid convergence was observed, and we estimate zc = 0.379 052 28 ± 0.000 000 01. This is
consistent with the limit found from our previous method described above, though not quite
as precise.

We have similarly extrapolated the estimates of λ(T ), and find λ ≈ 0.382 68, compared
to the expected value cos(3π/8) = 0.382 682.

4. Triangular lattice

We have also generated data for the triangular lattice in strips of widths up to and including
11. Using the best estimate [14] of the critical point, zc = 0.240 917 5745, we show, in
table 3, the values of AT (zc) and BT (zc) for each strip width. For the triangular lattice there
are two edges incident upon the origin in a strip geometry and this complicates matters. To

12
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simplify things, we start and finish our SAW on the boundary in the case of the triangular
lattice, in order to avoid the complications that arise when including an incident edge. So the
extra factor of zc included in the definition of these amplitudes for the square and honeycomb
lattice data is not present in the triangular lattice data.

As in the analysis of the square lattice data, we fitted successive pairs of values
(AT (zc), BT (zc)) and (AT+1(zc), BT+1(zc)) for T = 1, . . . , 10 to

1 = cα(T )AT (zc) + cβ (T )BT (zc),

and solved the associated linear equations for cα(T ) and cβ (T ).

To obtain precise estimates, we again applied the Bulirsch–Stoer extrapolation algorithm
to the sequences {cα(T )} and {cβ (T )}. Combining the results from these different
algorithms, we estimate cα = 0.201 2028(3) and cβ = 0.525 770(3). Thus the ratio
cα/cβ = 0.382 682(3). For the honeycomb lattice the corresponding ratio is cos(3π/8) =
0.382 6834 . . . , which (as we also saw for the square lattice) is close to, and probably equal
to, the triangular lattice value.

Assuming the ratio cα/cβ = cos(3π/8) for the triangular lattice too, we extrapolated
cos(3π/8)AT (zc)+BT (zc) for increasing values of T, using our standard suite of extrapolation
algorithms and the Bulirsch–Stoer algorithm. We estimated the limit to be 1.901 979 ±
0.000 001. We then repeated the analysis described above for the square lattice data mutatis
mutandis and found

1.901 979 − 0.1

T 2
≈ cos(3π/8)AT (zc) + BT (zc).

As remarked above, it has been proved [2] that limT→∞ BT (zc) = B(zc) = 0. Thus, in the
limit of infinite strip width, we find 1.901 979 ≈ cos(3π/8)A(zc), a prediction for the critical
amplitude A(zc) ≈ 4.970 111.

As for the square lattice case, we estimated the critical point zc by extrapolating the
intersection point of cos(3π/8)AT (z)+BT (z) and cos(3π/8)AT+1(z)+BT+1(z), called zc(T ).

One expects limT→∞ zc(T ) = zc.

In this way, we estimated

zc = 0.240 917 572 ± 0.000 000 005

for the triangular lattice. This can be compared to the best series estimate, based on the analysis
of very long polygon series zc(tr) = 0.240 917 5745 [14] with uncertainty in the last quoted
digit.

4.1. T dependence of the generating functions AT (zc) and BT (zc)

As for the honeycomb and square lattices, we expect BT (zc) ∼ const/T 1/4. We plotted
estimates of the exponent

gradB(T ) = log

(
BT (zc)

BT−1(zc)

) /
log

(
T

T − 1

)

against 1/T 0.85, which should approach −1/4, and were seen to do so. The figure was visually
indistinguishable from the corresponding figure 6 for the square lattice, so is not shown.

Similarly, it follows from (8) that ÃT (zc) = AT (zc) − a0 ≈ AT (zc) − 4.970 11 decays as
1/T 1/4 as T tends to infinity. As we did for the square lattice case, we also confirmed this
numerically.
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Table 4. Estimates of zc(T ) and λ(T ) for the triangular lattice.

T zc(T ) λ(T )

2 0.241 168 440 165 255 0.356 318 356 471 223
3 0.241 030 169 141 752 0.366 143 831 978 748
4 0.240 977 832 351 101 0.371 147 184 391 665
5 0.240 953 612 190 006 0.374 091 365 359 823
6 0.240 940 839 933 527 0.375 992 279 128 027
7 0.240 933 460 889 859 0.377 300 697 288 292
8 0.240 928 899 289 076 0.378 244 599 187 661
9 0.240 925 927 855 959 0.378 950 553 554 884

10 0.240 923 909 640 445 0.379 493 901 730 187

4.2. Alternative estimate of the critical point

In the previous section, we showed that, for the square lattice data, the simultaneous solution
of the pair of equations

λAT−1(z) + BT−1(z) − λAT (z) − BT (z) = 0

and

λAT (z) + BT (z) − λAT+1(z) − BT+1(z) = 0

gives a sequence of estimates of zc(T ) that converges to the critical point zc. Similarly, the
parameter λ converges to the ratio cα/cβ = cos(3π/8), where the equality is conjectural. We
solved these equations using the triangular lattice data, by seeking the solution of

(AT−1(z) − AT (z))(BT+1(z) − BT (z)) = (AT (z) − AT+1(z))(BT (z) − BT−1(z)),

called Zc(T ), and then found λ(T ) by back substitution. The results are shown in table 4.
We plotted (not shown) the estimates of zc(T ), against various powers of 1/T, and found

a linear plot if we plotted against 1/T 2. We analysed the sequences in precisely the same way
as for the corresponding square lattice data, using the Bulirsch–Stoer algorithm. The merit
of this method of estimating the critical point is that it makes no assumption about the value
of λ, while the method of estimating the critical point described in section 4 assumes that
λ = cos(3π/8). For the critical point we estimate zc = 0.240 917 575 ± 0.000 000 005. This
is of comparable precision to our estimate given in section 4, but slightly less precise than the
best series estimate [14] of zc = 0.240 917 5745, with uncertainty in the last digit.

Thus this method is again seen to be a powerful one for estimating critical points,
giving very good accuracy. We have similarly extrapolated the estimates of λ(T ), and find
λ ≈ 0.382 68, compared to the expected value cos(3π/8) = 0.382 682, exactly as for the
square lattice.

5. Enumeration of self-avoiding walks

The algorithm we use to enumerate SAWs on the square lattice builds on the pioneering
work of Enting [7] who enumerated square lattice SAPs using the finite lattice method. More
specifically, our algorithm is based in large part on the one devised by Conway, Enting and
Guttmann [5] for the enumeration of SAWs. The details of our algorithm can be found in [13].
Below we shall only briefly outline the basics of the algorithm and describe the changes made
for the particular problem studied in this work.

The generating function for a rectangle was calculated using transfer matrix (TM)
techniques. The most efficient implementation of the TM algorithm generally involves
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Figure 7. A snapshot of the boundary line (dashed line) during the transfer matrix calculation
of type A configurations on a strip of size 7 × 10. SAWs are enumerated by successive moves of
the kink in the boundary line, as exemplified by the position given by the dotted line, so that one
vertex and two edges at a time are added to the strip. To the left of the boundary line, we have
drawn an example of a partially completed SAW. The heavy lines at the top denotes the incoming
and outgoing edges of the SAW.

bisecting the finite lattice with a boundary (this is just a line in the case of rectangles)
and moving the boundary in such a way as to build up the lattice vertex by vertex as illustrated
in figure 7. If we draw a SAW and then cut it by a line, we observe that the partial SAW to the
left of this line consists of a number of loops connecting two edges (we shall refer to these as
loop ends) in the intersection, and pieces which are connected to only one edge (we call these
free ends). The other end of the free piece is an end point of the SAW so there are at most two
free ends.

Each end of a loop is assigned one of the two labels depending on whether it is the
lower end or the upper end of a loop. Each configuration along the boundary line can thus be
represented by a set of edge states {σi}, where

σi =

⎧⎪⎪⎨
⎪⎪⎩

0 empty edge,
1 lower loop-end,

2 upper loop-end.

3 free end.

(10)

If we read from the bottom to the top, the configuration or signature S along the intersection
of the partial SAW in figure 7 is S = {031212120}. Since crossings are not permitted, this
encoding uniquely describes which loop ends are connected.

A few changes to the algorithm described in [13] are required in order to enumerate the
restricted SAWs we study here. Most importantly, the SAW must have a free end at the middle
vertex of the top side of the strip. This is easily ensured by restricting the updating rules at this
vertex (also signatures prior to passing this vertex can have at most one free end). Specifically,
the middle vertex is reached when the TM boundary has been moved halfway through the
strip. At this point the incoming edge to the left of the middle vertex is either empty, an upper
loop-end or free. In the empty case, we have to insert a new free end (along either the horizontal
or the vertical outgoing edge). In the upper case, the loop-end is terminated and the matching
lower loop-end becomes a free end.
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In the free case, the end is again terminated and all the edges connected to this free
end form a SAW. However, this is only a valid configuration if all other edges are empty
since otherwise we would form configurations with more than one component. Second, in
enumerating SAWs of type A the second free end must lie in the top side of the rectangle; we
chose to force the free end to lie to the left of the middle vertex and use symmetry to count all
possible configurations. In counting bridges or SAWs of type B, the second free end must lie
at the bottom of the strip. Third, in [13], the SAWs were forced to span the rectangle, that is
touch all sides, but this restriction is lifted in this study.

The sum over all contributing graphs is calculated as the boundary is moved through the
lattice. For each configuration of occupied or empty edges along the intersection, we maintain
a generating function GS for partial walks with signature S. In exact enumeration studies GS

would be a truncated two-variable polynomial GS(z), where z is conjugate to the number of
steps.

In a TM update, each source signature S (before the boundary is moved) gives rise to
a few new target signatures S′ (after the move of the boundary line) and n = 0, 1 or 2 new
edges are inserted leading to the update GS′ (z) = GS′ (z) + znGS(z). Once a signature S
has been processed it can be discarded. In most studies, the calculations were done using
integer arithmetic modulo several primes with the full integer coefficients reconstructed at
the end using the Chinese remainder theorem. Here we are not really interested in the exact
coefficients. This makes life a little easier for us since we can use real coefficients with the
generating functions truncated at some maximal degree M. The calculations were carried
out using quadruple (or 128-bit) floating-point precision (achieved in FORTRAN with the
REAL(KIND=16) type declaration).

In our calculations we truncated AT (z) and BT (z) at degree M = 1000 and used strips
of half-length L = M. These choices of M and L more than suffice to ensure that numerical
errors are negligible as evidenced by the fact that when we solve (4) (with zc replaced by z)
to find zc for the honeycomb lattice the estimate for zc agrees with the exact value to at least
30 digits, that is, to within the numerical accuracy of the floating-point computation itself.

The computational complexity of the calculation required to obtain the number of walks
in a strip of width T and length L can be easily estimated. Time (and memory) requirements are
basically proportional to a polynomial in M and L times the maximal number of signatures,
NConf, generated during the calculation. It is well established [12] that NConf ∝ 3T so the
algorithm has exponential computational complexity.

The transfer-matrix algorithm is eminently suited to parallel computations and here we
used the approach first described in [12] and refer the interested reader to this publication for
further detail. The bulk of the calculations for this paper were performed on the cluster of the
NCI National Facility, which provides a peak computing facility to researchers in Australia.
The NCI peak facility is a Sun Constellation Cluster with 1492 nodes in Sun X6275 blades,
each containing two quad-core 2.93 GHz Intel Nehalem CPUs with most nodes having 3 GB
of memory per core (24 GB per node). It took a total of about 1800 CPU hours to calculate
AT (z) for T up to 15. The bulk of the time (almost 1250 h) was spent calculating A15(z). In
this case, we used 48 processors and the split between actual calculations and communications
was roughly 2 to 1 (with quite a bit of variation from processor to processor). Smaller widths
can be done more efficiently in that communication needs are fewer and hence not as much
time is used for this task.

On a technical issue we note that quad precision is not a supported data type in the MPI
standard. So in order to pass messages containing the generating functions, we used the MPI
data type MPI-BYTE with each coefficient then having a length of 16 bytes.
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The algorithm used for the triangular lattice is quite similar. The triangular lattice is
represented as a square lattice with additional edges along one of the main diagonals. This
poses an immediate problem since a boundary line drawn as in figure 7 would intersect 2T
edges thus greatly increasing the number of possible signatures. In this case it is more efficient
to draw the boundary line through the vertices of the lattice. We then again have T intersections,
however a vertex may be in an additional state since a partial SAW can touch the boundary
line without crossing it (see [14] for further details). The upshot is that the computational
complexity grows exponentially as 4T .

6. Conclusion

We started this study in order to consider to what extent, in some ill-defined sense, does there
exist a parafermionic operator applicable to SAWs on the square and triangular lattices. For
honeycomb lattice SAWs, (8) is an identity. For the square and triangular lattices we found,
experimentally, that for walks in a strip of width T on the square lattice

1.024 966(1 − 0.14/T 2) ≈ cos(3π/8)AT (zc) + BT (zc), (11)

while for the triangular lattice the corresponding result is

1.901 979(1 − 0.1/T 2) ≈ cos(3π/8)AT (zc) + BT (zc). (12)

Since BT (zc) → 0 as T → ∞, it follows that in the same limit AT (zc) → a0, where the
numerical value of a0 = 1/ cos(3π/8) for the honeycomb lattice, a0 ≈ 1.024 966/ cos(3π/8)

for the square lattice, and a0 ≈ 1.901 979/ cos(3π/8) for the triangular lattice. We provided
numerical support for the conjecture that BT (zc) ∼ const/T 1/4 as T → ∞, and hence that
AT (zc) − a0 ∼ const/T 1/4 also. Finally we show how the existence of equations (8), (11) and
(12) suggests a powerful numerical method to estimate the critical point. In that way we found
zc exactly for the honeycomb lattice, and estimated zc = 0.379 052 2775(5) for the square
lattice and zc = 0.240 917 573(5) for the triangular lattice.

It has been pointed out to the authors by Cardy that in the scaling limit, all two-dimensional
SAW models are given by the same conformal field theory. Since it is known that for one of
these models (i.e. honeycomb lattice SAW) the critical point can be found by requiring certain
contour integrals to vanish (i.e. when summing (1) over a region of the lattice), it follows
that in the scaling limit the same must be true for all two-dimensional SAWs. This is entirely
consistent with our observations and the relations (11) and (12).
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