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Abstract
We have studied the area-generating function of prudent polygons on the
square lattice. Exact solutions are obtained for the generating function of
two-sided and three-sided prudent polygons, and a functional equation is found
for four-sided prudent polygons. This is used to generate series coefficients
in polynomial time, and these are analysed to determine the asymptotics
numerically. A careful asymptotic analysis of the three-sided polygons
produces a most surprising result. A transcendental critical exponent is found,
and the leading amplitude is not quite a constant, but is a constant plus a small
oscillatory component with an amplitude approximately 10−8 times that of
the leading amplitude. This effect cannot be seen by any standard numerical
analysis, but it may be present in other models. If so, it changes our whole
view of the asymptotic behaviour of lattice models.

PACS numbers: 05.50.+q, 02.10.Ox

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A well-known long-standing problem in combinatorics and statistical mechanics is to find the
generating function for self-avoiding polygons or polyominoes on a two-dimensional lattice,
enumerated by area. These are models of biological vesicles that can expand or contract [1],
and also occur in models of magnetism, such as the Ising model.

Prudent walks were introduced to the mathematics community by Préa in an unpublished
manuscript [2] and more recently reintroduced by Duchi [4]. A prudent walk is a connected
path on Z

2 such that, at each step, the extension of that step along its current trajectory will
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Figure 1. Typical prudent walk of n = 2000 steps, generated via Monte Carlo simulation using a
pivot algorithm [3].

never intersect any previously occupied vertex. Such walks are clearly self-avoiding. We take
the empty walk, given by the vertex (0, 0) to be a prudent walk. Figure 1 shows a typical
prudent walk of n = 2000 steps, generated via Monte Carlo simulation using a pivot algorithm.
Note the roughly linear behaviour—it is believed, although unproven, that the mean-square
end-to-end distance grows like n2 for prudent walks, i.e. that the exponent ν defined through
〈R2〉N ∼ AN2ν is exactly 1.

The bounding box of a prudent walk is the minimal rectangle containing the walk. The
bounding box may reduce to a line or even to a point in the case of the empty walk. One
significant feature of two-dimensional prudent walks is that the end-point of a prudent walk
is always on the boundary of the bounding box. At every step of the walk, the step just taken
either lies on the perimeter of the existing bounding box of the walk or it extends the bounding
box (while still lying on the perimeter of the newly extended box). Note that this is not a
bijection. There are walks with each step lying on the perimeter of the bounding box that are
not prudent. Such walks we call perimeter walks. Prudent walks are, generally speaking, not
reversible. If a path from the origin to the end-point defines a prudent walk, it is not necessary
that the path from the end-point to the origin will also be a prudent walk. Ordinary SAW are
of course reversible.

Even though prudent walks are a subset of self-avoiding walks, the problem of their
enumeration is still not solved. Accordingly, certain subsets of prudent walks have been
studied. These are called one-sided, two-sided and three-sided prudent walks. The original
problem corresponds to four-sided prudent walks, but we will refer to them just as prudent
walks (see figure 2 for examples). Every step of a one-sided prudent walk must end on the
northern side of its bounding box. Every step of a two-sided prudent walk must end on the
northern or eastern sides of its bounding box.

Every step of a three-sided prudent walk must end on the northern, eastern or western
sides of its bounding box. Here we will be concerned with the polygon analogue. A prudent
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(a) (b) (c) (d)

Figure 2. Examples of (a) a two-sided prudent SAW; (b) a three-sided prudent SAW; (c) an
(unrestricted) prudent SAW; and (d) a prudent SAW leading to a prudent SAP.

polygon is a prudent walk of 2n−1 steps that ends on a lattice site adjacent to the origin. Then
the addition of a single bond suffices to close the walk, forming a 2n-step polygon, as shown
in figure 2(d). The case of two-sided prudent walks was solved by Duchi [4] who also gave a
functional equation for four-sided prudent walks. The case of three-sided prudent walks was
subsequently solved by Bousquet–Mélou [5], who also solved a version of the model on the
triangular lattice. Bousquet–Mélou used the kernel method [6] to solve the three-sided case,
which had a rather complicated solution, given in terms of the q-series.

The polygon version of the problem was introduced by one of us (AJG) and studied by
Schwerdtfeger [7] who solved the problem in the case of the perimeter-generating function of
two-sided and three-sided prudent polygons, using a method of solution similar to that used
by Bousquet–Mélou for the walk case. For the unrestricted, or four-sided case, Garoni et al
[8] used a transfer-matrix formulation to generate the first 500 terms in the generating function
(equivalent to 1000 step polygons). Schwerdtfeger [7] subsequently gave an equivalent, but
more elegant, functional equation for the four-sided case. Garoni et al [8] gave an analysis of
the 500-term series. Despite the substantial length of the series, the results were not as precise
as one might have expected. The number of polygons of perimeter 2n was found to grow
like Aμ2nng, where the estimates μ2 ≈ 4.415 and g ≈ 2.5 were given. The estimate of g in
particular was rather uncertain, being very sensitive to the value of μ used in its estimation.

The rest of this communication is about the behaviour of prudent polygons enumerated by
area rather than perimeter. That case is in one sense easier, in that as we move from two-sided,
to three-sided to four-sided, the exponential growth factor μ appears to remain unchanged3.
For perimeter enumeration, μ changes as we move through the same cycle of models. While
for the four-sided case, enumerated by area, we have not solved the problem, we do at least
know the exact value of μ2, which is 4. This makes the series analysis more precise than in
the perimeter enumeration case.

Let an denote the number of polygons, of a given class, enclosing an area n. Typically,
indeed, until this work we would have said invariably, the asymptotic behaviour of an is

an ∼ Bμnng. (1)

Here μ is the growth constant, g is the critical exponent (sometimes 1 + g is referred to as the
critical exponent, as that is the exponent that occurs in the singular behaviour of the generating
function A(z) = ∑

anz
n ∼ D(1 − μz)−(1+g)), and B is a critical amplitude (sometimes D is

referred to as the critical amplitude). For most solvable models, μ is algebraic, g is a simple
rational fraction and B (or the simply related D) is a real number.

3 This is proved for two-sided and three-sided polygons, but only verified to high precision for four-sided polygons.
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Figure 3. A prudent SAW corresponding to a one-sided prudent SAP.

We will show that for one-sided and two-sided prudent polygons, enumerated by area,
that is precisely the case. However, for three-sided prudent polygons, we prove that this is not
the case. First, we find a non-rational critical exponent, g = log2 3 ≈ 1.584. However, the
most astonishing result is that the limit as n tends to infinity of an/(μ

nng) does not exist! That
is to say, there is no unique critical amplitude. Indeed, we find that

an ∼ β(log2 n)μnng, μ = 2, g = log2 3,

where β(n) is a periodic function with mean value 0.108 38 and amplitude of the periodic
oscillation around 10−9. Thus, the ratio an/(μ

nng) oscillates with a known periodicity!
Given that such a small variation in amplitude is extraordinarily difficult to detect

numerically, this result raises the question as to just how common this behaviour is? Are
there other models for which the standard asymptotics as given by equation (1) does not
prevail? If so, it opens a whole new chapter in the study of exactly solved models.

A comprehensive and detailed discussion of the asymptotic analysis will be published
elsewhere [9]. Here we will give only a sketch of the derivation, as our aim in this
communication is to focus on the implications of the result for other lattice models of interest
in mathematical physics.

2. The behaviour of prudent polygons

2.1. One-sided prudent polygons

One-sided prudent polygons are simply a single row or column of cells. An example of a
prudent SAW leading to a one-sided prudent polygons is shown in figure 3. The area-generating
function is, self-evidently,

A1(q) = 2q

1 − q
,

while the semi-perimeter-generating function is

P1(x) = 2x2

1 − x
.

The singularity in either case is a simple pole at q = 1 or x = 1 for the area- or perimeter-
generating function, respectively.

2.2. Two-sided prudent polygons

Two-sided prudent polygons ending at (0, 1) in a counterclockwise direction appear as upside-
down bar graphs. A bar graph is either a single column or can be constructed by adding a
column to the right of another bar graph, and thus the bar-graph-generating function B(q)

satisfies

B(q) = q

1 − q
+

q

1 − q
B(q).
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Figure 4. A prudent SAW corresponding to a two-sided prudent SAP.

So

B(q) = q

1 − 2q
.

A two-sided prudent polygon ending at (0, 1) in a clockwise direction is just a row of cells to
the left of the y-axis, with the generating function q/(1−q). Adding together these clockwise
and counterclockwise generating functions and multiplying by 2 (representing a reflection in
the line y = x to obtain polygons ending at (1, 0)) gives

A2(q) = 2q(2 − 3q)

(1 − q)(1 − 2q)
=

∑
n

a(2)
n qn.

An example of a prudent SAW leading to a two-sided prudent polygons is shown in figure 4.
Obtaining the perimeter-generating function requires more work, but the final solution is [7]

P2(x) = 1

x

(
1 − 3x + x2 + 3x3

1 − x
−

√
(1 − x)(1 − 3x − x2 − x3)

)
=

∑
n

p(2)
n xn.

For the area-generating function, we have

a(2)
n = 2n + 2,

in accordance with the fact that the generating function singularity is a simple pole at q = 1/2.

For the perimeter growth, if we define ρ2 to be the positive zero of
√

(1 − 3x − x2 − x3) ≈
0.295 5977 . . . , then

p(2)
n ∼ E2

2
√

πn3
ρ−n

2 ,

where E2 ≈ 0.854 8166 . . . is a known algebraic number [7].

2.3. Three-sided prudent polygons

For three-sided prudent polygons, counted by semi-perimeter, Schwerdtfeger [7] has given
the solution, derived by the kernel method [6]. It is a rather complicated sum of products of
quotients of q-functions. However, its asymptotic behaviour is similar in structure to other
models, and is

p(3)
n ∼ E3

2
√

πn3
ρ−n

3 ,

5



J. Phys. A: Math. Theor. 43 (2010) 342001 Fast Track Communication

Figure 5. A prudent SAW corresponding to a three-sided prudent SAP.

where ρ3 ≈ 0.244 1312 . . . and E3 can be calculated to any desired accuracy. An example of
a prudent SAW leading to a three-sided prudent polygon is shown in figure 5.

To calculate the area-generating function of three-sided polygons, we can write down the
following functional equation, in terms of an additional catalytic variable u which measures
the width of the polygon. We measure the area enclosed by three-sided prudent walks starting
at the origin and ending at (−1, 0) in a counterclockwise direction as

A
(−1,0)
3 (q, u) = qu(1 − q)2

(1 − q − qu)(1 − 2q)
+

q(−1 + q − qu + u + q2u)

(1 − 2q)(1 − q − qu)
A

(−1,0)
3 (q, qu). (2)

We solve this functional equation by iteration, and finally set u = 1. Three-sided prudent
polygons ending at other points or in other directions are either trivial or can be obtained by
reflecting those polygons described above. Altogether we obtain

A3(q) = −2q3(1 − q)2

(1 − 2q)2

∞∑
n=1

(−1)nq2n

(1 − 2q)n
a(q; qn) +

2q(3 − 10q + 9q2 − q3)

(1 − 2q)2(1 − q)
, (3)

where

a(q; z) = −(1 − 2q)(v; q)∞(uz; q)∞
q2(1 − q − qz)(vz; q)∞(u; q)∞

; u = q

1 − q
, v = 1 − q + q2

1 − q
. (4)

As usual

(u; q)∞ =
∞∏

n=0

(1 − uqn).

To determine the asymptotics, our first line of attack was to generate 500 terms in the
series expansion and apply the usual methods of series analysis [10]. The results of that
analysis gave a(3)

n ≈ λ × ng × 2n, with λ ≈ 0.108 and g ≈ 1.585. This seemed such an
unlikely exponent that we decided to perform a careful asymptotic analysis of the generating
function, using methods of analytic combinatorics described in [11].

First, note that A3(q) is, up to rational substitutions, a q-hypergeometric function, and
that a(q; z), defined in equation (4), is analytic for |q|, |z| <

√
5−1
2 ≈ 0.618. Then writing

a(q; z) =
∑
m,l

am,lq
mzl,

the summation in equation (3) becomes
∞∑

n=1

(−1)nq2n

(1 − 2q)n

∑
m,l

am,lq
mqnl = −

∑
m,l

am,lq
m ql+2

1 − 2q + ql+2
.
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We wish to determine the asymptotic expansion around q = 1/2. We define a small parameter
t = 1 − 2q. The sum then becomes approximately

−
∑
m,l

am,l

2−m

1 + t · 2l+2
, (5)

and we are interested in the asymptotic behaviour around t = 0.

The Mellin transform of a function f (x) is

φ(s) =
∫ ∞

0
xs−1f (x) dx,

and our analysis of (5) follows the methods of [12]. The Mellin transform of 1
1+αx

is
πα−s/ sin πs. The Mellin transform of equation (5) is therefore

−
∑
m,l

am,l2
−m2−s(l+2)π/ sin πs = −2−2sπ/ sin πs · a

(
1

2
; 2−s

)
. (6)

Now

a

(
1

2
; z

)
= −4(3/2; 1/2)∞(z/2; 1/2)∞

(3z/2; 1/2)∞(1/2; 1/2)∞
.

The singularities closest to the right of the fundamental strip of (6) occur when

1 − 3

2
2−s = 0

or

sk = log2 3 − 1 +
2kπ i

log 2
, k ∈ Z. (7)

Near s ≈ s0, the rhs of equation (6) becomes

16π

9 log 2 sin(πs0)
· (3/2; 1/2)∞(1/3; 1/2)∞

(1/2; 1/2)2∞
× 1

s − s0
.

The inverse Mellin transform can now be taken, which just involves replacing 1
s−s0

by
(1 − 2q)−s0 . Reintroducing the prefactor multiplying the sum in equation (3), we find the
leading asymptotic behaviour to be

π

9 log 2 sin(πs0)
· (3/2; 1/2)∞(1/3; 1/2)∞

(1/2; 1/2)2∞
× 1

(1 − 2q)s0
. (8)

The transfer of the asymptotic form (8) of A3(q) at its singularity q = 1/2 to the coefficients
a(3)

n is permitted, subject to various side conditions, and here we resort to singularity analysis
as described in [11]. This leads us to expect the asymptotics to behave, in the usual way, as

a(3)
n ∼ κ · ng · 2n, (9)

where

κ = π

9 log 2 sin(πs0)
(s0 + 2)
· (3/2; 1/2)∞(1/3; 1/2)∞

(1/2; 1/2)2∞
= 0.108 384 2947 . . . (10)

and

g = s0 + 1 = log2 3 = 1.584 962 501 . . .

in seemingly good agreement with our series analysis. However, there are two surprises. The
first is the transcendental value of the exponent. This is very rare for two-dimensional lattice
models. What is even rarer is the fact that there are other terms (‘harmonics’) of the same

7
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asymptotic order as (9), but of a numerically minute amplitude and an oscillating character.
In particular, recall that only the term k = 0 in equation (7) was taken. If we now include
the next two terms, corresponding to k = ±1, we get an additional term, to be added to the
dominant term, of the form

κ ′ · ng · 2n,

where

κ ′ = c1 cos(2π log2 n) + c2 sin(2π log2 n), (11)

where c1, c2 ≈ 10−9. Taking k = ±2 adds a further oscillatory term with an even smaller
amplitude. Thus, we see that the leading amplitude does not, in fact, exist in a technical sense.
That is to say, the limit

lim
n→∞

a(3)
n

ng · 2n

does not exist! Numerically, we are unlikely to ever observe this, as the ‘effective amplitude’
is indeed given by equation (10) and varies from this value as n increases by no more than
about one part in 108. Knowing that this term is present, and having available very long series
of hundreds of terms, we can see clear numerical evidence of this [9].

The sub-dominant term in the asymptotic expansion is expected to be proportional to
n · 2n. Partly heuristic algebra of q-identities, supported by extensive numerical evidence,
suggests that the coefficient of this term is identically zero. Details of this derivation are given
in [9]. It is not subject to an additional oscillatory component. The next terms we expect are
proportional to ng−1 log n and ng−1. If we write

a(3)
n ∼ 2n(κ · ng + κ1 · n + κ2 · ng−1 log n + κ3 · ng−1)

and fix κ to the value given in equation (10), κ1 to zero and g = log2 3, we can solve a
pair of linear equations, corresponding to successive n values, and find estimators of κ2 and
κ3. The estimates are κ2 = −0.4 ± 0.15 and κ3 = 0.5 ± 0.5. As well as the leading term,
already discussed, these last two terms should also possess the property of a small additive
oscillatory component to the amplitude. These oscillations are entirely masked by the very
large uncertainties we quote in our amplitude estimates, but the effect can be seen by a careful
Maple analysis, which we have done [9].

3. The full problem or four-sided polygons

A prudent SAW leading to an unrestricted or four-sided prudent polygons is shown in figure 3.
For unrestricted perimeter polygons enumerated by area, we can construct a functional
equation. Polygons ending at (1, 0) in a clockwise direction can be rotated and/or reflected to
give all other four-sided polygons, so the generating function for these polygons is precisely
1/8 of the overall generating function. We partition this sub-class of polygons into three
classes X ,Y and Z , with respective generating functions X(1,0)(q, u, v), Y (1,0)(q, u, v) and
Z(1,0)(q, u, v). In all three cases q measures the area; for X , u measures the width and v

measures the height; for Y , u measures the height and v measures the width; and for Z , u
measures the width −1 and v measures the height. We find that

X(1,0)(q, u, v) = qv

1 − q
[X(1,0)(q, u, v) − X(1,0)(q, qu, v)]

+
qv

1 − q
[Y (1,0)(q, v, u) − Y (1,0)(q, v, qu)]

+
quv

1 − q
[Z(1,0)(q, u, v) − qZ(1,0)(q, qu, v)] (12)

8
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Y (1,0)(q, u, v) = quv +
qv

1 − q
[Y (1,0)(q, u, v) − Y (1,0)(q, qu, v)]

+
qv2

1 − q
[Z(1,0)(q, v, u) − Z(1,0)(q, v, qu)]

+ quv[X(1,0)(q, qv, u) + Y (1,0)(q, u, qv) + qvZ(1,0)(q, qv, u)] (13)

Z(1,0)(q, u, v) = qv

1 − q
[Z(1,0)(q, u, v) − Z(1,0)(q, qu, v)]

+ qvY (1,0)(q, qv, u) + quvZ(1,0)(q, u, qv). (14)

An explanation of the sub-classesX ,Y andZ and the derivation of this equation is given in [9],
and is based on a construction by Schwerdtfeger [7]. The generating function for four-sided
polygons is

A(4)(q) = 8(X(1,0)(q, 1, 1) + Y (1,0)(q, 1, 1) + Z(1,0)(q, 1, 1)) =
∑

a(4)
n qn. (15)

We are unable to solve this functional equation, nor extract its asymptotics. Accordingly,
we turn to series analysis. The functional equation can be iterated to generate long series in
polynomial time. The first few terms a

(4)
1 , . . . , a

(4)

15 are

8, 16, 40, 96, 232, 560, 1336, 3176, 7480, 17 528, 40 776, 94 336, 21 6976,

496 432, 1130 120.

The full series can be found at www.ms.unimelb.edu.au/∼tonyg. We cannot prove that the
dominant term in the asymptotics is the exponential growth term 2n, but our numerical
estimates, plus comparison with other solved models, suggest that this is likely to be true.
We cannot say if the same phenomenon of a non-existent critical amplitude will occur in this
case, but even if so, it will not affect our numerical study, which is too crude to detect possible
effects of the magnitude observed for the three-sided case.

We have used a variety of techniques of series analysis [10], including the method of
differential approximants, and standard sequence extrapolation algorithms to estimate the
critical exponent. Assuming a(4)

n ∼ λ · 2n · ng4 , in order to estimate the exponent g4 we
extrapolated the sequence

n
(
a(4)

n

/(
2 · a

(4)
n−1

) − 1
) ∼ g4.

This sequence is very slowly converging, despite the fact that we have some 800 terms in the
sequence. The best we can do is estimate 2.58 < g4 < 2.61, where, as is usual in series
analysis, the bounds are confidence limits and are not rigorous. It is tempting to conjecture
that the exponent g4 in this case is just 1 greater than that for the three-sided case, g3, so that
g4 = 1 + log2(3) = 2.584 96 . . . .

We have investigated this conjecture with some success. First, we considered the
Hadamard quotient of the series for four-sided polygons and that of the derivative of the
series for three-sided polygons. Differentiation increases the exponent by 1. If the conjecture
is true, the coefficients of the Hadamard quotient should tend to a constant. With 800 terms
in the quotient series, the ratio does seem to be approaching a constant. If a(3)

n denotes the
number of three-sided polygons of area n and a(4)

n denotes the number of four-sided polygons
of area n, extrapolating the quotient hn = n ·a(3)

n

/
a(4)

n , we find a limit of 3.25±0.05. Next, we
tested the assumption that the asymptotics for the four-sided case is just given by the derivative
of the three-sided case. We fitted successive quartets of coefficients aj , aj+1, aj+2, aj+3 to

2n(κ · ng4 + κ1 · n2 + κ2 · ng4−1 log n + κ3 · ng4−1).

9
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Estimates of κ are well converged to κ ≈ 0.033 41 ± 0.000 03. This implies that the ‘amplitude’
of the three-sided polygons should be 0.033 41 ± 0.000 03 × 3.25 ± 0.05 = 0.108 ± 0.002
which agrees well with the direct estimate, calculated above, of 0.108 384 . . . . On balance,
we believe the conjecture is more likely to be true than not.

4. Conclusion

We have studied the area-generating function of prudent polygons in two dimensions, and
their restrictions to one-sided, two-sided and three-sided versions. The results are consistent
with our expectations for the rather simple one- and two-sided cases.

For the three-sided case, a careful asymptotic analysis reveals surprising asymptotic
behaviour. First, we find an irrational critical exponent, which is rare for two-dimensional
solvable models. Second, we find that the leading ‘amplitude’ strictly speaking does not exist.
Instead, we find that we have what could perhaps be described as a pseudo amplitude which
is a numerical approximation accurate to some eight decimal digits. But in fact there is an
additional, additive term, periodic with periodicity log2 n and amplitude approximately 10−9.

Given that such a small variation in amplitude is extraordinarily difficult to detect
numerically, this result raises the question as to just how common this behaviour is? Are
there other models for which the standard asymptotics as given by equation (1) does not
prevail? If so, it raises an intriguing new chapter in the study of exactly solved models. A
numerical analysis for the four-sided or ‘full’ prudent polygon case is given. The growth
constant remains unchanged from that of the solvable two- and three-sided cases, and the
exponent appears to be 1 greater than the corresponding exponent for the three-sided case.
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