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Abstract

We consider self-avoiding polygons in a restricted geometry, namely an in�nite L ×M tube in Z3.
These polygons are subjected to a force f , parallel to the in�nite axis of the tube. When f > 0 the force
stretches the polygons, while when f < 0 the force is compressive. We obtain and prove the asymptotic
form of the free energy in both limits f → ±∞. We conjecture that the f → −∞ asymptote is the
same as the limiting free energy of “Hamiltonian” polygons, polygons which visit every vertex in a
L ×M × N box. We investigate such polygons, and in particular use a transfer-matrix methodology to
establish that the conjecture is true for some small tube sizes.

Dedicated to Anthony J. Guttmann on the occasion of his 70th birthday.

1 Introduction

Since the advent of single molecule experiments using, for example, atomic force microscopy, there has
been much interest in modelling polymers subject to a tensile force (see for example [3, 4, 6, 12, 16, 18, 29]).
Models range from random walk in R3 to lattice models and they have been studied both numerically and
using combinatorial or probabilistic analysis. Recent advances on the theoretical side, include a proof for
the self-avoiding walk (SAW) lattice model of linear polymers that there is a phase transition between a free
and a ballistic phase at a critical force, fc, corresponding to when the force, f = fc = 0 [4]. Most recently,
for the square lattice, conjectures based on Schramm-Loewner evolution have been used to predict the
form of the partition function and associated critical exponents [6].

From the beginning, one particular area of focus has been on the e�ect of topological constraints [12]
and, for example, how the knotting probability in ring polymers depends on the force [29]. For a lattice
model of this, self-avoiding polygons on the simple cubic lattice are the standard model. For this case, Janse
van Rensburg et al [29] found that for su�ciently large �xed forces, all but exponentially few su�ciently
large polygons are knotted. It is believed that this should hold for any force f , but this has yet to be
proved. By restricting the polygons to lie in a lattice tube however, Atapour et al [3] proved that for any
�xed force (either stretching or compressing), all but exponentially few su�ciently large polygons are
knotted. The proof was based on transfer-matrix theory and pattern theorem arguments. In this paper,
we explore the Atapour et al model further by investigating the asymptotes as the force goes to either
plus or minus in�nity. We establish the existence of the asymptotes and their form. Furthermore, we
determine a subset of polygons whose free energy becomes dominant in the limit as the force goes to
negative in�nity. One subset of these polygons are those which correspond to undirected Hamiltonian
circuits (called Hamiltonian polygons); using arguments adapted from [10] we establish for this subset
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that the limiting free energy exists, and we review the result from [10] that all but exponentially few
su�ciently large Hamiltonian polygons are knotted. From transfer-matrix calculations, we also explore
whether Hamiltonian polygons dominate as the force goes to negative in�nity. We establish that they do
dominate for small tube sizes, and conjecture that this holds for all tube sizes. If this conjecture holds
then, for example, for any force f ∈ [−∞,∞), all but exponentially few su�ciently large polygons will be
knotted.

The tube models studied here also have potential applications to the study of single DNA molecules
in nanochannels [8, 22, 23], DNA under con�nement [1, 21], or protein con�gurations [19]. As discussed
in [8], DNA under high tensile forces f >> 0 behaves similarly to DNA con�ned to a nanochannel.
For this comparison, typically the DNA length is �xed and either force is increased or channel-size is
decreased. In this paper, we prove for a lattice model of a nanochannel, that, regardless of the tube size
(including all of Z3), the order of the limits of polymer length (n) going to in�nity and force (f ) going to
in�nity can be interchanged, to yield the same asymptotic limit for the free energy. In the f << 0 regime,
polymers are compressed and behaviour can be comparable to polymers in semi-dilute solution [8], tightly
packed polymers, or collapsed polymers. Again in typical experiments, polymer length is �xed and one is
interested in con�gurational properties as compression is increased. Here, we provide evidence that again
the order of the limits can be interchanged and that maximally compressed polymers can be modelled by
Hamiltonian polygons.

To obtain these results, we use exact enumeration and transfer-matrix methods to study self-avoiding
polygons, building on the numerous contributions of A. J. Guttmann to this area. For example, in [11,
13], Guttmann and collaborators developed transfer matrix methods for e�cient exact enumeration to,
amongst other things, obtain bounds on growth constants and study the critical exponents for polygons on
the square lattice. In the recent paper [6], related approaches are used to study compressed walks, bridges
and polygons. Here we follow in a similar vein but explore compressed and stretched three-dimensional
polygons embedded in an essentially one-dimensional lattice subset and we use transfer-matrix theory
and exact enumeration/generation methods to obtain relationships between free energies and growth con-
stants.

The paper is structured as follows. First the details of the Atapour et al model are reviewed, highlighting
known upper and lower bounds for the free energy as a function of the force f . Next we establish the
asymptotic forms for the free energy, �rst as f →∞ and next as f → −∞. Finally we prove results about
Hamiltonian polygons and use transfer matrix arguments for small tube sizes to validate our conjecture
that they dominate the free energy as the force goes to minus in�nity.

Note that �gures 1 and 3 as well as an extended abstract of the f → −∞ asymptote arguments also
appear in [5].

2 The model

For non-negative integers L,M , let TL,M ≡ T ⊂ Z3 be the semi-in�nite L × M tube on the cubic lattice
de�ned by

T = {(x ,y, z) ∈ Z3 : x ≥ 0, 0 ≤ y ≤ L, 0 ≤ z ≤ M}.

De�ne PT to be the set of self-avoiding polygons in T which occupy at least one vertex in the plane x = 0,
and let PT,n be the subset of PT comprising polygons with n edges. Then let pT,n = |PT,n |. See Figure 1
for a polygon in the 2 × 1 tube.
Remark. Throughout the rest of this paper, the symbol n will only be used to denote the number of edges
in polygons. We will thus always assume that n is even. This includes limits and, for example, limn→∞
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Figure 1: A self-avoiding polygon in the 2 × 1 tube. This polygon has length 36 and span 6.

should be interpreted as a limit through even values of n only. Furthermore, for L = M = 0, pT,n = 0 for
all n, thus for the rest of the paper we assume at least one of L or M is strictly positive.

We de�ne the span s(π ) of a polygon π ∈ PT to be the maximal x-coordinate reached by any of its
vertices and we use |π | to denote the number of edges in π . To model a force acting parallel to the x-
axis, we associate a fugacity (Boltzmann weight) e f s(π ) with each polygon π . Let pT,n(s) be the number of
polygons in PT,n with span s . Then de�ne the partition function

ZT,n(f ) =
∑
|π |=n

e f s(π ) =
∑
s

pT,n(s)e
f s .

The weight f represents a force in the following way: when f � 0, polygons with small span will
dominate the partition function, so this corresponds to the “compressed” regime. On the other hand, when
f � 0, polygons with large span will dominate the partition function, so this corresponds to the “stretched”
regime.

We will use the notationW = (L + 1)(M + 1) (the number of vertices in an integer plane x = i ≥ 0 of
the tube) for shorthand, and will assume without loss of generality that L ≥ M . Note that for any n ≥ 4
the minimum span for any n-edge polygon, smin(n), is such that pn(smin(n)) > 0 and given any polygon
π ∈ PT,n , s(π ) ≥ smin(n) ≥

n
W . The maximum span of an n-edge polygon is n−2

2 [3]. We thus have the
following bounds which correct [3, eqn. (6)]:

max{e f (n−1)/2,pT,n(smin(n))e
f smin(n)} ≤ ZT,n(f )

=
∑
s

pT,n(s)e
f s

≤ max{e f smin(n), e f (n−1)/2}pT,n . (1)

The free energy of polygons in T is de�ned as

FT(f ) = lim
n→∞

1
n
logZT,n(f ).

This is known [3] to exist for all f . It is a convex function of f , and is thus continuous and almost-
everywhere di�erentiable. It has been proved [3] that:

ZT,n(f ) = αT(f )e
FT(f )n

(
1 +O(n−1)

)
, (2)

where αT(f ) depends only on f , L and M . From this it also follows that, for example,

lim
n→∞

ZT,n+2(f )

ZT,n(f )
= e2FT(f ). (3)
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Note that |PT,n | = pT,n = ZT,n(0) ≤Wpn , where pn is the number of n-edge self-avoiding polygons in
Z3 counted up to translation. It has been proved that [25, 26],

FT(0) = lim
n→∞

n−1 logpT,n < lim
n→∞

n−1 logpn = lim
n→∞

n−1 log cn ≡ κ ≡ log µ, (4)

where cn is the number of n-step self-avoiding walks (SAWs) in Z3 starting at the origin and κ is their
connective constant.

The bounds in (1) lead to the following bounds on the free energy:

max{ f /2, (f /W ) + lim sup
n→∞

n−1 logpT,n(smin(n))} ≤ FT(f )

≤ max{ f /W , f /2} + FT(0).

For the lower bound, one set of polygons which have minimum span are the Hamiltonian polygons.
We de�ne the number of Hamiltonian polygons, pHT,n , to be the number of n-edge, for n =W (s + 1), span-s
polygons in PT,n which occupy every vertex in an L ×M × s subtube of T. In [10], the following limit is
proved to exist and we have:

κHT ≡ lim
s→∞

1
(s + 1)W logpHT,(s+1)W ≤ lim sup

n→∞
n−1 logpT,n(smin(n)).

Thus another set of bounds for the free energy is given by:

max{ f /2, (f /W ) + κHT } ≤ FT(f ) ≤ max{ f /W , f /2} + FT(0). (5)

For small tube sizes, FT(f ), f ∈ (−∞,∞), and κHT have been obtained from numerical calculations of the
eigenvalues of appropriate transfer matrices [10]; the resulting free energy and bounds associated with
(5) are shown in Figure 2 (more details about these calculations will be given in Section 4). These graphs
strongly suggest that the free energy is asymptotic to the lower bound as f goes to ±∞. In the next section
we explore this proposition, and prove that it is indeed the case for f →∞. We also establish the form for
the asymptote as f → −∞ and provide further evidence, for small tube sizes, that it corresponds to the
lower bound in (5).

3 f → ±∞ asymptotes

In this section we focus on the free energy FT(f ). In particular, we determine its behaviour in the two
large-force limits, f → ±∞. There are a number of results from [27, Chapter 3] (see also [28, Chapter 3]
and [17] for modi�ed presentations) which will be important in this section. For this reason we explicitly
state them here. We begin with some necessary assumptions.

Assumptions 1 (Assumptions 3.1 of [27]). Let uk (m) be the number of objects of size k and energy m.
Assume that uk (m) satis�es the following properties:

(1) There exists a constant K > 0 such that 0 ≤ uk (m) ≤ Kk for each value of k andm.

(2) There exist �nite integers Ak and Bk and a real constant C satisfying 0 ≤ Ak ≤ Bk ≤ Ck such that
uk (m) > 0 for Ak ≤ m ≤ Bk and uk (m) = 0 otherwise.
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(a) Free energies in the 2 × 1 tube.
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(b) Free energies in the 3 × 1 tube.
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(c) Free energies in the 4 × 1 tube.
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(d) Free energies in the 2 × 2 tube.

Figure 2: Numerical calculations of the free energies of polygons in three-dimensional tubes, plotted
against the force f . The black points are calculations of FT(f ) (numerically accurate to ±10−5). The red
and green curves are respectively lower and upper bounds for FT(f ), as given by (5). Observe that in all
cases, the black points appear to be asymptotic to the lower bounds for both f →∞ and f → −∞.
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(3) uk (m) satis�es a supermultiplicative inequality of the type

uk1(m1)uk2(m2) ≤ uk1+k2(m1 +m2). (6)

We now add a further assumption which is not required in [27], but will make calculations here some-
what simpler.

Assumptions 2. The limits
A = lim

k→∞

Ak

k
and B = lim

k→∞

Bk
k

exist, with A < B.

Theorem 1 (Theorems 3.4 and 3.5 of [27]). Let uk (m) be a sequence satisfying Assumptions 1 and 2. Then
if ϵ ∈ (A,B), the density function D(ϵ) is de�ned by the limit

logD(ϵ) = lim
k→∞

1
k
loguk (bϵkc) .

The function logD(ϵ) is a concave function of ϵ on (A,B), and is thus continuous and almost-everywhere
di�erentiable. Moreover, there exists a number ηk ∈ {0, 1} such that for each k ,

1
k
loguk (bϵkc + ηk ) ≤ logD(ϵ).

We next de�ne partition functions and relate them to the density function D(ϵ). Let

Uk (z) =
∑
m

uk (m)e
zm .

Theorem 2 (Theorems 3.6, 3.17 and 3.19 of [27]). The limit

F (z) = lim
k→∞

1
k
logUk (z)

exists for all z. Moreover,
F (z) = sup

A<ϵ<B
{logD(ϵ) + ϵz}

and
logD(ϵ) = inf

−∞<z<∞
{F (z) − ϵz} .

Our next preliminary result is a generalisation of [27, equation (3.4)].

Lemma 1. LetTk be a sequence satisfyingAk ≤ Tk ≤ Bk andTk = Bk+o(k). Moreover, assume that Bk < Bk
for all k su�ciently large. Then

logD(B−) ≡ lim
ϵ→B−

logD(ϵ) ≥ lim sup
k→∞

1
k
loguk (Tk ).
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Proof. De�ne ϵk = Tk/k . Then because Tk ≤ Bk < Bk , we have ϵk < B for all k su�ciently large and
limk→∞ ϵk = B.

Fix anyk such that ϵk < B. Let N ∈ N, and put r = Nk . Since ϵkr is an integer, the supermultiplicativity
assumption (6) can be used repeatedly to split up ur (ϵkr ) a total of N − 1 times, to obtain

ur (ϵkr ) ≥ uk (ϵkk)
N = uk (Tk )

N .

Take logs, divide by r = Nk , and take N →∞ (keeping k �xed). The limit of the left-hand-side exists, and
is the log of the density function, so

logD(ϵk ) ≥
1
k
loguk (Tk ).

Taking the lim sup as k →∞ of both sides then gives

lim sup
k→∞

1
k
loguk (Tk ) ≤ lim sup

k→∞
logD(ϵk )

≤ lim
ϵ→B−

logD(ϵ)

= logD(B−),

where the �nal limit exists due to the concavity of logD(ϵ). �

We also note the following consequences of the concavity of logD(ϵ) and Theorem 2 (see for ex-
ample [20, Corollary 4] and [9, Chapter VI] for further background on convex functions and Legendre
transforms):

lim
z→∞
(F (z) − Bz) = lim

ϵ→B−
logD(ϵ) ≡ logD(B−) (7)

lim
z→−∞

(F (z) −Az) = lim
ϵ→A+

logD(ϵ) ≡ logD(A+). (8)

3.1 f →∞

The main result of this section is the following theorem.

Theorem 3. For any tube size L ×M , in the limit f → ∞ the free energy FT(f ) is asymptotic to f /2. That
is,

lim
f→∞

(
FT(f ) −

f

2

)
= 0. (9)

Theorem 3 is in fact a corollary of a more general result. We restrict polygons to the half-space of Z3
de�ned by x ≥ 0. Let P be the subset of these polygons which contain at least one edge in the plane x = 0;
the number of such polygons (counted up to y- and z-translations) is equal to pn as previously de�ned in
Section 2. The span of these polygons is de�ned in the same way as for those in T; let pn(s) be the number
with length n and span s , and de�ne the partition function

Zn(f ) =
∑
s≥0

pn(s)e
f s .
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It is well-known [29] that the free energy

F (f ) = lim
n→∞

1
n
logZn(f )

exists for all f and is a convex function.

Theorem 4. In the limit f →∞, the free energy F (f ) is asymptotic to f /2. That is,

lim
f→∞

(
F (f ) −

f

2

)
= 0. (10)

Before commencing the proof, we introduce some new de�nitions. Let P∗ be the set of polygons π ∈ P
which satisfy the additional constraints:

• π has span s ≥ 2,

• π contains the edge (0, 0, 0) (0, 1, 0) (called its left-most-edge) and no other edges in the plane
x = 0,

• π contains the edge (s,y, z) (s,y + 1, z) for some y and z (called its right-most-edge), and contains
no other edges in the plane x = s , and

• π contains no edges in the plane x = s − 1.

Let p∗n(s) be the number of polygons in P∗ with length n and span s . Then p∗n(s) satis�es Assumptions 1,
with length corresponding to size and span corresponding to energy. To see this, note the following.

(1) K = 6 satis�es condition (1).

(2) The numbers An and Bn are

An =


2 n = 6
3 n = 8
4 n ≥ 10

Bn =
n − 2
2 .

The n-edge polygon π̃n ∈ P
∗ consisting of the edges (0, 0, 0) − (0, 1, 0), (n−22 , 0, 0) − (

n−2
2 , 1, 0) and

(i, 1, 0) − (i + 1, 1, 0), (i, 0, 0) − (i + 1, 0, 0), i = 0, . . . , n−22 − 1 has span Bn . Note that An = Bn for
n ≤ 8. For n ≥ 10, an n-edge polygon in P∗ with span s ∈ [An ,Bn) can be obtained from π̃2s+2 by
concatenating an appropriately rotated and translated version of π̃n−2s−2 at the edge (1, 1, 0)−(2, 1, 0)
of π̃2s+2. Thus p∗n(s) > 0.

(3) Any two polygons π1,π2 ∈ P∗ can be concatenated (by translating π2 so that its left-most-edge
coincides with the right-most-edge of π1 and then deleting the two coincident edges) in a way that
preserves total length and total span, giving

p∗n1(s1)p
∗
n2(s2) ≤ pn1+n2(s1 + s2).
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Now de�ne P∗n(f ) =
∑

s p
∗
n(s)e

f s . By Theorem 2, the free energy

F ∗(f ) = lim
n→∞

1
n
log P∗n(f )

exists. Since p∗n(s) ≤ pn(s), we have F ∗(f ) ≤ F (f ). Moreover, there exist constants n0 and s0 such that
any polygon π ∈ P of length n and span s can be converted into a unique polygon π ′ ∈ P∗ with length
n + n0 and span s + s0. So

pn(s) ≤ p∗n+n0(s + s0).

Multiply this by e f (s+s0), sum over s , take logs, divide by n and take n → ∞ to obtain F (f ) ≤ F ∗(f ), so
that we in fact have

F ∗(f ) = F (f ). (11)

Proof of Theorem 4. By Theorems 1 and 2, the Legendre transform of F ∗,

logS∗(ϵ) = inf
−∞<f <∞

{F ∗(f ) − ϵ f } = lim
n→∞

1
n
logp∗n (bϵnc) , (12)

exists and is �nite and concave for ϵ ∈ (0, 1/2), where S∗(ϵ) can be viewed as the growth rate of polygons
with “span density” ϵ , that is, those polygons whose span is asymptotically ϵ times their length.

Then by Theorem 2,
F ∗(f ) = sup

0<ϵ<1/2
{logS∗(ϵ) + f ϵ} . (13)

Then as f gets large, it follows from (7) that the behaviour of F ∗(f ) is obtained by taking ϵ → (1/2)−. We
thus need to examine the behaviour of logS∗(ϵ) in this limit.

First note that by applying Lemma 1 with the sequence Tn = (n − 2)/2, we have

lim
ϵ→1/2−

logS∗(ϵ) ≥ lim sup
n→∞

1
n
logp∗n

(
n − 2
2

)
= 0. (14)

Now polygons in P∗ can be unambiguously rooted and oriented (let (0, 0, 0) be the root, with the �rst
step in the positive y direction), so we can view such a polygon as a walk which is self-avoiding except
for the start and end vertex. Given π ∈ P∗n , let ω(π ) be the resulting walk composed of the sequence of
vertices v0 = (0, 0, 0),v1, . . . .,vn ,vn+1 = v0. We de�ne an increasing step of π to be any step (vi ,vi+1) of
ω(π ) in the positive x direction which increases the span of the walk (i.e. the maximum x-coordinate of the
vertices in the subwalk fromv0 tovi+1 is one greater than that for the subwalk fromv0 tovi ). So a polygon
with span s has exactly s increasing steps. Likewise, de�ne the decreasing steps of π to be the increasing
steps of ω(π )′, where ω(π )′ is the walk obtained by reversing the orientation of ω(π ) (but maintaining the
same root). A polygon of span s will thus also have s decreasing steps.

To obtain an upper bound on logS∗(ϵ) as ϵ → 1/2−, we de�ne

k∗n(t) =
∑
s≥t

p∗n(s),

that is, the number of polygons of length n and span at least t .
Given any �xed r ≤ n, we can write n = pr + q with 0 ≤ q < r , so any polygon π ∈ P∗n can be divided

into p or p + 1 subwalks, the �rst p of which have length r . If the polygon’s span is at least t then it has at
least t increasing and at least t decreasing steps, and thus at most n− 2t steps which are neither increasing
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nor decreasing. So at mostn−2t of itsp length-r subwalks contain non-increasing or non-decreasing steps,
and the rest (for p > n − 2t ) must be composed entirely of increasing or decreasing steps. A subwalk that
contains only increasing or decreasing steps must only have steps in the x direction (positive or negative),
and hence (due to self-avoidance) the subwalk must be either entirely increasing or entirely decreasing.
Hence there are only two types of such subwalks of length r ; one consists of r positive x-steps and the
other r negative x-steps. Letting u = n − 2t , we thus have

k∗n(t) ≤
u∑
i=0

(
p

i

)
cir 2p−icq , (15)

where cn is the number of SAWs of length n.
Given any δ > 0, take r su�ciently large (≥ Nδ ) so that 2 ≤ eδ r and cr ≤ e(δ+κ)r (this is possible due

to (4)). Then

k∗n(t) ≤
u∑
i=0

(
p

i

) (
e(δ+κ)r

) i (
eδ r

)p−i
cq

= eδ rpcq

u∑
i=0

(
p

i

)
eκr i . (16)

Let t = bϵnc so that u = n−2bϵnc. Noting that p ∼ n/r , let ϵ be su�ciently close to 1/2 so that u < p/2
(for p ≥ 4, ϵ > (1/2) − 1/(3r ) is su�cient). Then the largest summand of (16) is the last one, so

k∗n(bϵnc) ≤ eδ rpcq(u + 1)
(
p

u

)
eκru .

Take logs, divide by n and apply Stirling’s formula:

1
n
logk∗n (bϵnc) ≤

1
n
log (u + 1) + δrp

n
+
1
n
log cq +

κru

n

−
p

n
log

(
p − u

p

)
+
u

n
log

(p − u
u

)
+O

(
logn
n

)
.

Then for r > Nδ and ϵ > (1/2) − 1/(3r ) �xed, take p →∞ and hence n →∞ (note that u ∼ (1 − 2ϵ)n):

logS∗(ϵ) ≤ lim sup
n→∞

1
n
logk∗n (bϵnc)

≤ δ + κr (1 − 2ϵ) − 1
r
log (1 − r + 2rϵ) + (1 − 2ϵ) log

(
1 − r + 2rϵ
r − 2rϵ

)
.

Taking ϵ → 1/2− gives
lim sup
ϵ→1/2−

logS∗(ϵ) ≤ δ .

Let δ be arbitrarily small, and combine with (14), to obtain

lim
ϵ→1/2−

logS∗(ϵ) = 0. (17)

Finally by taking f →∞ in (13), and using (7) and (11), we obtain the result. �
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Figure 3: Left: A 9-block of the 6 × 0 tube. This 9-block has length 50. Right: A full 4-block of the 2 × 1
tube. This 4-block has length 24.

The corresponding result for polygons in T then follows in a straightforward manner as described
next.

Proof of Theorem 3. Since PT,n contains at least one polygon of span (n−2)/2 for every even n (speci�cally
π̃n), we have FT(f ) ≥ f /2.

Every polygon in T also occurs in the half-space, but certain polygons which are only counted once
in Zn(f ) may be counted multiple times in ZT,n(f ), because translations of a polygon in the y and/or z
directions (but still staying in T) are all counted separately. However, the number of possible translations
is bounded above by a constant c depending only on L and M , so

ZT,n(f ) ≤ cZn(f ).

Taking logs, dividing by n and sending n →∞, we have

FT(f ) ≤ F (f ),

and the result follows. �

3.2 f → −∞

In this section we consider the case of compressed polygons. Some preliminary de�nitions and results are
required before the main theorem can be stated.

Given a polygon π ∈ T, a hinge Hk of π is the set of edges and vertices lying in the intersection of π
and the y-z plane de�ned by {(x ,y, z) : x = k}. A section Sk is the set of edges in π , in the x direction,
connecting Hk−1 and Hk . A half-section of Sk is the set of half-edges in Sk with either k − 1 ≤ x ≤ k − 1

2 or
k − 1

2 ≤ x ≤ k .
A 1-block of T is any non-empty hinge which can occur in a polygon π in T, together with the half-

edges of π in the two adjacent half-sections. The length of a 1-block is the sum of the lengths of all its
polygon edges and half-edges. It is thus natural to view a 1-block as the part of a polygon between two
half-integer x-coordinates k ± 1

2 for some k ∈ Z.
An s-block is then any connected sequence of s 1-blocks, the entirety of which can occur in a polygon

in T. (It is also possible, if the �rst and last half-sections of the s-block are empty, for the s-block itself to
be a polygon.) The length of an s-block is the sum of the lengths of its constituent 1-blocks. Let bT,s be
the number of s-blocks in T, counted up to translation in the x-direction. See Figure 3 for an example of a
9-block in a 6 × 0 tube.
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Lemma 2. The limit
βT = lim

s→∞

1
s
logbT,s (18)

exists and is �nite.

Proof. Any (s + t)-block can be cut into an s-block and a t-block; we thus have

bT,s+t ≤ bT,sbT,t .

So {logbT,s } is a subadditive sequence, and the limit (18) exists. We clearly have bT,s ≥ 1 for all s ≥ 1, so
that βT is �nite. �

A 1-block is full if its length is equal to W = (L + 1)(M + 1). Equivalently, a 1-block is full if every
vertex in a plane {(x ,y, z) : x = k} is in its hinge. An s-block is full if every one of its constituent 1-blocks
is full. See Figure 3 for an example. Let bFT,s be the number of full s-blocks in T.

Lemma 3. The limit
βFT = lim

s→∞

1
s
logbFT,s (19)

exists and is �nite.

Proof. The reasoning is the same as in Lemma 2. A full (s + t)-block can be cut into a full s-block and a full
t-block, so

bFT,s+t ≤ bFT,sb
F
T,t .

The sequence {logbFT,s } is thus subadditive, and the limit (19) exists. Likewise (consider for example s-
blocks obtained from Hamiltonian polygons) bFT,s ≥ 1 for all s ≥ 1. �

We are now able to state the main theorem of this section.

Theorem 5. For any tube size L×M , in the limit f → −∞ the free energy FT(f ) is asymptotic to (βFT+ f )/W ,
whereW = (L + 1)(M + 1). That is,

lim
f→−∞

(
FT(f ) −

f

W

)
=
βFT
W
. (20)

The proof of Theorem 5 will require, at least at �rst, a di�erent approach to that of Theorem 3. We
begin with some more de�nitions.

Let P∗T be the set of those polygons π ∈ PT which satisfy the additional constraints:

• π has span s ≥ 2,

• π contains the edge (0, 0, 0) (0, 1, 0) and no other edges in the plane x = 0,

• π contains the edge (s, 0, 0) (s, 1, 0) and no other edges in the plane x = s , and

• π contains no edges in the plane x = s − 1.

Let p∗T,n(s) be the number of polygons in P∗T with length n and span s . We de�ne a partition function
analogous to ZT,n(f ):

Z ∗T,n(f ) =
∑
s

p∗T,n(s)e
f s .

12



Lemma 4. The free energy

F ∗T (f ) = lim
n→∞

1
n
logZ ∗T,n(f )

exists and is equal to FT(f ).

Proof. If (L,M) = (1, 0) then Z ∗T,n(f ) = e f (n−2)/2, and the result is trivial. Otherwise, at least one of the
statements L ≥ 2 or M ≥ 1 is true.

We show that the sequence p∗T,n(s) satis�es Assumptions 1 with size k = n and energy m = s , so that
Theorem 2 can be applied.

1. Using K = 6 su�ces to satisfy condition (1).

2. The numbers An and Bn (respectively the minimum and maximum possible spans for a P∗T polygon
of length n) are

An =


2 n = 6
3 n = 8
max

{
4,

⌈n−6
W

⌉
+ 2

}
n ≥ 10

Bn =
n − 2
2 .

Using speci�c hinges such as those de�ned in Section 4 for the proof of Theorem 6, it is possible to
prove that p∗T,n(s) > 0 for each integer s ∈ [An ,Bn].

3. The set P∗T has been de�ned so that any two polygons π1,π2 in P∗T can be concatenated in a way
that preserves both total length and total span. Let π1 have span s1, and de�ne e1 to be the single
edge of π1 with maximal x-coordinate and e2 to be the single edge of π2 with minimal x-coordinate.
Then

i. Translate π2 so that e1 and e2 coincide, and delete those two edges.
ii. If L ≥ 2 then replace the edge (s1 − 1, 1, 0) (s1, 1, 0) with the three edges

(s1 − 1, 1, 0) (s1 − 1, 2, 0) (s1, 2, 0) (s1, 1, 0).

Otherwise if (L,M) = (1, 1) then replace the edge (s1 − 1, 1, 0) (s1, 1, 0) with the three edges

(s1 − 1, 1, 0) (s1 − 1, 1, 1) (s1, 1, 1) (s1, 1, 0).

See Figure 4 for an illustration. So any two polygons π1,π2 in P∗T, of lengths n1 and n2 and spans s1
and s2, can be concatenated to give another polygon in P∗T of length n1 + n2 and span s1 + s2. Thus

p∗T,n1(s1)p
∗
T,n2(s2) ≤ p∗T,n1+n2(s1 + s2), (21)

and condition (3) is satis�ed.

Since P∗T ⊆ PT, we have F ∗T (f ) ≤ FT(f ). To obtain the reverse inequality, we use the fact that any
PT polygon can be converted into a unique P∗T polygon by adding a �xed number n0 of edges, which
increase the span by at most a constant number s0 (see for example [2, 26]). (Both n0 and s0 depend on the
dimensions of the tube T.) Thus

pT,n(s) ≤
s+s0∑
s ′=s

p∗T,n+n0(s
′).

13



+

=

Figure 4: The concatenation operation of P∗T polygons described in the proof of Lemma 4, in the 2×1 tube.
The second polygon is translated so that the red edges coincide. These edges are then removed, and the
green edge is replaced by the three blue edges. Note that the total length, 32, and the total span, 8, are
preserved.

Multiplying by e f s and summing over s ,

Zn(f ) =
∑
s

pT,n(s)e
f s ≤

∑
s

e f s
s+s0∑
s ′=s

p∗T,n+n0(s
′)

=
∑
s

s+s0∑
s ′=s

p∗T,n+n0(s
′)e f s

′

e f (s−s
′)

=
(
1 + e−f + . . . + e−f s0

) ∑
s

p∗T,n+n0(s)e
f s

≤ (s0 + 1)max{1, e−f s0}Z ∗T,n+n0(f ).

Taking logs, dividing by n and letting n →∞ provides the required result. �

Polygons in P∗T then have a density function, similar to S∗(ϵ) as de�ned in (12):

logS∗T(ϵ) = inf
−∞<f <∞

{
F ∗T (f ) − ϵ f

}
= lim

n→∞

1
n
logp∗T,n(bϵnc)

for ϵ ∈ (1/W , 1/2), with
F ∗T (f ) = sup

1/W <ϵ<1/2

{
logS∗T(ϵ) + ϵ f

}
. (22)

The approach to proving Theorem 5 will involve the ‘dual’ object to F ∗T (f ). Let q∗T,s (n) = p
∗
T,n(s). (We

introduce this quantity to make it clear that we are now interpreting the span of a polygon as its ‘size’ and
the length of a polygon as its ‘energy’.) De�ne

Q∗T,s (z) =
∑
n

q∗T,s (n)e
zn .
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Lemma 5. The free energy

G∗T(z) = lim
s→∞

1
s
logQ∗T,s (z)

exists for all z. It is a convex function of z, and is thus continuous and almost-everywhere di�erentiable.

Proof. If (L,M) = (1, 0) then the result is again trivial, so we can assume that at least one of the statements
L ≥ 2 or M ≥ 1 is true.

We show that the sequence q∗T,s (n) satis�es Assumptions 1, with one minor caveat.

(1) Since q∗T,s (n) ≤ bT,s+1 ≤ (bT,1)
s+1, using K = (bT,1)

2 su�ces to satisfy condition (1).

(2) The numbers As and Bs (respectively the minimum and maximum possible lengths of a P∗T polygon
of span s) are

As = 2(s + 1) Bs =


As if s = 2, 3
W (s − 2) + 6 ifW or s ≥ 4 even
W (s − 2) + 5 ifW and s > 4 odd.

However, note that q∗T,s (n) > 0 only if n is even. Condition (2) can then be met by letting the
energy of a polygon be its half-length, rather than its length. Adjusting everything to account for
this essentially amounts to taking n 7→ n/2 in the de�nitions of q∗T,s (n) and Q∗T,s (z), and likewise
dividing the values of As and Bs by 2. This is straightforward, so we will in general continue to use
length instead of half-length.

(3) The inequality (21) can be rewritten as

q∗T,s1(n1)q
∗
T,s2(n2) ≤ q∗T,s1+s2(n1 + n2),

so condition (3) is satis�ed.

By Theorem 2, the free energy G∗T(z) exists. A standard application of the Cauchy-Schwarz inequality
(see for example [14, Section 2.3]) demonstrates the convexity of G∗T(z). �

Remark. A similar argument to that of the proof of Lemma 4 can be used to show that G∗T(1) = βT; that is,
P∗T polygons and s-blocks in T (counted by span) have the same growth rate. Moreover, if s-blocks in T are
equipped with a fugacity z measuring their length, it is also possible to show that they have a well-de�ned
free energy, and that that free energy is equal to G∗T(z). The same arguments do not allow one to establish
the same relationship between full s-blocks and Hamiltonian polygons (polygons of span s which occupy
every vertex in their s + 1 hinges) – see Section 4 and Figure 7 for details.

We will now determine the asymptotic behaviour of G∗T(z) as z → ∞, and will see later that this is
related, in a very simple way, to the behaviour of FT(f ) as f → −∞. We once again make use of a density
function. By Theorem 2 there is a ‘length density’ function, analogous to S∗(ϵ) as de�ned in (12):

logL∗T(α) = inf
−∞<z<∞

{
G∗T(z) − αz

}
= lim

s→∞
logq∗T,s (bαsc). (23)

The function logL∗T(α) is �nite and concave for α ∈ (2,W ). The inverse Legendre transform is then

G∗T(z) = sup
2<α<W

{
logL∗T(α) + αz

}
. (24)

We will determine the behaviour of logL∗T(α) as α → W −, which, together with (7), informs the
behaviour of G∗T(z) for z →∞. For readability we split the result into an upper and lower bound.
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Lemma 6. For any tube size L ×M , the density function L∗T(α) satis�es

logL∗T(W
−) ≡ lim

α→W −
logL∗T(α) ≤ β

F
T. (25)

Proof. The following argument is inspired by a proof of [24] regarding adsorbing self-avoiding walks.
De�ne

j∗T,s (m) =
∑
n≥m

p∗T,s (n),

that is, the number of P∗T polygons of span s and length at leastm.
Given any �xed r ≤ s + 1, we write s + 1 = pr + t with 0 ≤ t < r , and think of a polygon of span s as

a connected sequence of p r -blocks and (possibly) one t-block. If a polygon has span s and length n then
it hasW (s + 1) − n unoccupied vertices within its s + 1 hinges. Letting u =W (s + 1) −m, the maximum
number of unoccupied vertices in a polygon with at least length m, and then by considering all possible
choices for the number i of r -blocks with unoccupied vertices, we have

j∗T,s (m) ≤
u∑
i=0

(
p

i

) (
bT,r

) i (
bFT,r

)p−i
bT,t .

For any �xed δ > 0 take r su�ciently large (> Nδ ) so that bT,r ≤ e(βT+δ )r and bFT,r ≤ e(β
F
T+δ )r . Then

j∗T,s (m) ≤ bT,t

u∑
i=0

(
p

i

)
eir (βT+δ )e(p−i)r (β

F
T+δ )

= bT,te
rp(β F

T+δ )
u∑
i=0

(
p

i

)
eir (βT−β

F
T). (26)

Now let m = bαsc, so that u =W (s + 1) − bαsc. Noting that p ∼ s/r , take α su�ciently close toW so that
u < p/2 (α >W − 1/(2r + 4) is su�cient). Then the largest summand of (26) is the last one, so

j∗T,s (bαsc) ≤ bT,te
rp(β F

T+δ )(u + 1)
(
p

u

)
eru(βT−β

F
T).

Take logs, divide by s and apply Stirling’s formula:

1
s
log j∗T,s (bαsc) ≤

1
s
logbT,t +

rp(βFT + δ )

s
+
ru(βT − β

F
T)

s
+
1
s
log(u + 1)

−
p

s
log

(
p − u

p

)
+
u

s
log

(p − u
u

)
+O

(
log s
s

)
.

With r > Nδ and α >W − 1/(2r + 4) �xed, take a lim sup as p →∞ (and hence s →∞) to �nd

logL∗T(α) ≤ lim sup
s→∞

1
s
log j∗T,s (bαsc)

≤ βFT + δ + r (W − α)(βT − β
F
T) −

1
r
log(1 − r (W − α)) + (W − α) log

(
1

r (W − α)
− 1

)
.

In the limit α →W −,
logL∗T(W

−) ≤ βFT + δ .

Since δ can be arbitrarily small, the proof is complete. �
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The proof of the other bound makes use of Lemma 1.

Lemma 7.
logL∗T(W

−) ≡ lim
α→W −

logL∗T(α) ≥ β
F
T.

Proof. By de�nition, any s-block or full s-block can be ‘completed’, by adding edges at one or both of
its ends, to create a self-avoiding polygon of span ≥ s + 1. In particular, there are constants s0 and n0
(dependant on the dimensions of the tube T) such that any full s-block can be completed into a unique P∗T
polygon of span s + s0 and length betweenWs andWs + n0. So

bFT,s ≤
Ws+n0∑
n=Ws

q∗T,s+s0(n).

Now let nmax
s+s0 be the value of n betweenWs andWs + n0 which maximises q∗T,s+s0(n) (if there are multiple

such values, take the smallest one). We then have

bFT,s ≤ (n0 + 1)q
∗
T,s+s0

(
nmax
s+s0

)
.

Observe that nmax
s is a sequence which satis�es the conditions of Lemma 1: it is by de�nition a value

between the minimum and maximum lengths for P∗T polygons of span s , and nmax
s =Ws + o(s). So

logL∗T(W
−) ≥ lim sup

s→∞

1
s
logq∗T,s

(
nmax
s

)
≥ lim sup

s→∞

1
s
log

(
bFT,s−s0
n0 + 1

)
= lim

s→∞

1
s
logbFT,s

= βFT. �

Now Lemmas 6 and 7, together with (24) and (7), imply the following.

Corollary 1. In the limit as z →∞, the free energy G∗T(z) is asymptotic toWz + βFT. That is,

lim
z→∞

(
G∗T(z) −Wz

)
= βFT.

We are now able to complete the proof of the main theorem of this section.

Proof of Theorem 5. For given rational α ∈ (2,W ), we have

logL∗T(α) = lim
s→∞

1
s
logq∗T,s (bαsc).

If we take this limit through values of s such that s/α is an integer, then this can be written as

logL∗T(α) = lim
s→∞

1
s/α

logq∗T,s/α (s)

= lim
s→∞

α

s
logp∗T,s (s/α)

= α logS∗T(1/α).
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Continuity allows us to extend this result to all α ∈ (2,W ), and it can alternatively be written as

ϵ logL∗T(1/ϵ) = logS∗T(ϵ) (27)

for ϵ ∈ (1/W , 1/2).
Now consider (22) in the case that f → −∞. By (8), the behaviour of F ∗T (f ) in this limit will be

determined by the behaviour of logS∗T(ϵ) as ϵ → (1/W )+. By (27) and Lemmas 6 and 7,

logS∗T
(
(1/W )+

)
≡ lim

ϵ→(1/W )+
logS∗T(ϵ) =

1
W

logL∗T(W−)

=
βFT
W
,

so that by (8), F ∗T (f ) is asymptotic to f /W + βFT/W as f → −∞. Since FT(f ) = F ∗T (f ), the theorem is
complete. �

4 Hamiltonian polygons

Theorem 5 establishes that, in the limit of a large compressive force, the free energy of polygons in an L×M
tube is related to the growth rate βFT of full s-blocks in the tube. At �rst, this may seem peculiar: one might
expect that the f → −∞ asymptote should be related to the growth rate of some easily described class
of polygons, not blocks. In fact we do expect this to be the case. The precise statement of our conjecture,
corroborated by numerical analysis for small tube sizes, is presented later in this section (Conjecture 1).

Recall that, if the �rst and last half-sections of an s-block are empty, the s-block itself forms a polygon
of span s−1. Conversely, any polygon π of span s corresponds to a unique (s+1)-block. If that (s+1)-block
is full, we will say that π is Hamiltonian. Note that, since π occupies every vertex in its s + 1 hinges, it
must have length n = (s + 1)W = (s + 1)(L + 1)(M + 1). Then because n must be even, we conclude that
Hamiltonian polygons of span s can exist only ifW is even or s is odd.

Let pHT,n be the number of Hamiltonian polygons of length n in the tube T, de�ned up to translation
in the x-direction. Note that pHT,n = 0 if n is not a multiple ofW ; moreover, ifW is odd then n must be a
multiple of 2W .

The following result establishes that Hamiltonian polygons have a growth rate, and is proved here
using arguments adapted from [10, Chapter 4].

Theorem 6 ([10, Chapter 4]). The limit

κHT = lim
n→∞

1
n
logpHT,n (28)

exists, where the limit is taken through values of n which are multiples of W (resp. 2W ) when W is even
(resp. odd). The limit is �nite.

The proof of Theorem 6 will follow from a concatenation argument. Before we begin, it will be conve-
nient to introduce two special hinges, constructed via a process called zig-zagging. This process, operating
in an L × M rectangle of the y-z plane (i.e. a hinge of T, with 0 ≤ y ≤ L and 0 ≤ z ≤ M), generates a
self-avoiding walk via the following algorithm.

1. Begin at initial vertex (x ,y0, z0).
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(a) The hinge HA
T (x) in a 7 × 4 tube. (b) The hinge HA

T (x) in a 6 × 4 tube.

(c) The hinge HB
T (x) in a 7 × 4 tube. (d) The hinge HB

T (x) in a 6 × 4 tube.

Figure 5: Hinges HA
T (x) and HB

T (x) in the y-z plane, when L is odd or even. The bottom left corner in each
is the vertex (x ,y, z) = (x , 0, 0).

2. If possible (without violating self-avoidance), take steps in the positive z-direction, without passing
z = M . Go to step 3.

3. If possible (without violating self-avoidance), take steps in the negative z-direction, without passing
z = 0. Go to step 4.

4. If possible (without violating self-avoidance or passingy = L), take a step in the positivey-direction,
and return to step 2. If not, terminate the process.

The two special hinges are then de�ned as follows.

• HA
T (x) consists of the edges (x , 0, 0) (x , 1, 0) . . . (x ,L, 0), together with a zig-zagging starting

at (x , 0, 1).

• HB
T (x) consists of the edges (x , 1, 0) (x , 2, 0) . . . (x ,L, 0), together with a zig-zagging starting

at (x , 0, 0).

See Figure 5 for examples. Note that if M = 0 then HA
T (x) is just a line of edges from (x , 0, 0) to (x ,L, 0),

while HB
T (x) is the vertex (x , 0, 0) together with edges from (x , 1, 0) to (x ,L, 0).

Proof of Theorem 6. We will show that pHT,n is a supermultiplicative sequence, by demonstrating that any
two Hamiltonian polygons in T can be concatenated to give a third.

Let π be a Hamiltonian polygon in T of length n and span s . Since π is Hamiltonian, the vertex (0, 0, 0)
must be occupied, and thus at least one of the edges (0, 0, 0) (0, 1, 0) and (0, 0, 0) (0, 0, 1) must also be
occupied. (Clearly if M = 0 then it must be the former.) We say that π is of type S1 if (0, 0, 0) (0, 1, 0)
is occupied, otherwise it is of type S0. Similarly, at least one of the edges (s, 0, 0) (s, 1, 0) and (s, 0, 0)
(s, 0, 1)must be occupied by π ; if the former is occupied then π is of type F1, otherwise it is of type F0. (The
S and F stand for start and �nish.)
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◦

=

Figure 6: The concatenation operation of two Hamiltonian polygons in the 2 × 1 tube, as described in the
proof of Theorem 6. This is case (c), where the �rst polygon is of type F0 and the second is of type S1. The
red edges are the two special hinges HA

T (3) and HB
T (4), and the blue edges connect these special hinges to

the two polygons and to each other.

Now let π1 and π2 be two Hamiltonian polygons in T, of lengths n1 and n2 and spans s1 and s2 respec-
tively. We will de�ne a new polygon π1 ◦ π2 generated by concatenation. There are four cases to consider,
depending on whether π1 is of type F0 or F1, and whether π2 is of type S0 or S1. In all cases, we begin by
translating π2 a distance of s1 + 3 in the positive x-direction.

(a) (π1,π2) of types (F1, S1): Insert hinges HB
T (s1 + 1) and HB

T (s1 + 2). Delete edges (s1, 0, 0) (s1, 1, 0)
in π1 and (s1 + 3, 0, 0) (s1 + 3, 1, 0) in (the translation of) π2. Insert the two edges required to join
π1 to HB

T (s1 + 1), the two edges required to join HB
T (s1 + 2) to π2, and the two edges required to join

HB
T (s1 + 1) to HB

T (s1 + 2).

(b) (π1,π2) of types (F1, S0): Insert hinges HB
T (s1 + 1) and HA

T (s1 + 2). Delete edges (s1, 0, 0) (s1, 1, 0) in
π1 and (s1+3, 0, 0) (s1+3, 0, 1) in π2. Insert the three pairs of edges required to join π1 toHB

T (s1+1),
HA
T (s1 + 2) to π2, and HB

T (s1 + 1) to HA
T (s1 + 2).

(c) (π1,π2) of types (F0, S1): Insert hinges HA
T (s1 + 1) and HB

T (s1 + 2). Delete edges (s1, 0, 0) (s1, 0, 1) in
π1 and (s1+3, 0, 0) (s1+3, 1, 0) in π2. Insert the three pairs of edges required to join π1 toHA

T (s1+1),
HB
T (s1 + 2) to π2, and HA

T (s1 + 1) to HB
T (s1 + 2).

(d) (π1,π2) of types (F0, S0): Insert hinges HA
T (s1 + 1) and HA

T (s1 + 2). Delete edges (s1, 0, 0) (s1, 0, 1) in
π1 and (s1+3, 0, 0) (s1+3, 0, 1) in π2. Insert the three pairs of edges required to join π1 toHA

T (s1+1),
HA
T (s1 + 2) to π2, and HA

T (s1 + 1) to HA
T (s1 + 2).

See Figure 6 for an example. In each of these four cases, we have constructed a unique Hamiltonian
polygon of length n1 + n2 + 2W and span s1 + s2 + 3. We thus have

pHT,n1p
H
T,n2 ≤ pHT,n1+n2+2W . (29)
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Subtracting 2W from each of n1 and n2 gives

pHT,n1−2WpHT,n2−2W ≤ pHT,n1+n2−2W ,

so that
{
logpHT,n−2W

}
is a subadditive sequence. It follows that the limit (28) exists. Moreover, it is straight-

forward to connect up sequences of HA
T (x) hinges (or alternatively, sequences of HB

T (x) hinges) in order to
show that, for any n a multiple ofW (resp. 2W ) whenW is even (resp.W is odd), there exists a Hamiltonian
polygon of length n. So for those values of n,

1 ≤ pHT,n ≤ pT,n =⇒ 0 ≤ κHT ≤ FT(0) < ∞. �

As with general polygons in T, one can associate a force f with the span of Hamiltonian polygons, to
obtain a partition function ZH

T,n(f ). Moreover, since all Hamiltonian polygons of length n have the same
span s = n/W − 1, we have

ZH
T,n(f ) = p

H
T,ne

f (n/W −1).

The corresponding free energy then has a simple form:

F H
T (f ) = lim

n→∞

1
n
logZH

T,n(f ) = κ
H
T +

f

W
,

where the limit is taken through values of n which are multiples ofW or 2W as appropriate.
Having established the existence of a growth rate κHT and free energy F H

T (f ), we are now able to state
the conjectured relationship between compressed and Hamiltonian polygons.

Conjecture 1. Hamiltonian polygons and full s-blocks in the L ×W tube T, counted by length instead of
span, have the same growth rate. That is,

κHT =
βFT
W

whereW = (L+ 1)(M + 1). Consequently, in the limit f → −∞, the free energy FT(f ) of polygons in the tube
is asymptotic to F H

T (f ) = κ
H
T + f /W . That is,

lim
f→−∞

(
FT(f ) − F

H
T (f )

)
= 0.

Note that, since every Hamiltonian polygon of span s is a full (s + 1)-block, it follows immediately
that κHT ≤ βFT/W . It is the reverse inequality which is more challenging. As remarked in Section 3.2, it
is possible to prove that polygons and s-blocks in T have the same growth rate, by showing that every
s-block can be “completed”, by adding edges at its start and end, to a polygon. This is not true for full
s-blocks and Hamiltonian polygons, however; there exist full s-blocks which can never form a part of a
Hamiltonian polygon. See Figure 7 for an example.

We next explore the validity of this conjecture for small tube sizes using transfer matrix calculations.

4.1 Transfer-matrices and Hamiltonian polygons

We focus �rst on de�ning 1-patterns in terms of 1-blocks, and then use 1-patterns to de�ne a transfer
matrix. To do this, �rst consider any ω ∈ PT and let s be its span. The polygon ω uniquely de�nes a
sequence of s + 1 connected 1-blocks: E0(ω),E1(ω), . . . ,Es (ω). Given a j ∈ {1, . . . , s}, ω can be thought of
as a connected sequence of three embeddings E1j , Ej (ω) and E3j where E1j (resp. E3j ) consists of the edges
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Figure 7: A full 5-block in the 3 × 0 tube which can never form of a part of a Hamiltonian polygon.

and half-edges of ω before (resp. after) the plane x = j − 1
2 (x = j + 1

2 ). Since ω is a polygon, the vertices
of Ej (ω) in the plane x = j − 1

2 are connected pairwise by sequences of edges in E1j . To de�ne a 1-pattern,
it is unnecessary to keep the full details of these edge sequences; rather, it will be enough to store the
connectivity information in terms of which of the left-most vertices of Ej (ω) are connected together in E1j .
For this, we �rst label the vertices of the left-most plane of Ej (ω) lexicographically as v j1, . . . ,v

j
r j . Next we

obtain a pair-partition Sj of the vertex labels {1, . . . , r j } from V j = {v j1, . . . ,v
j
r j }, using the connectivity

information from E1j . We then de�ne the left connectivity information for Ej (ω) by this pair partition Ej =
Sj . For E0(ω), because its left-connectivity information is completely determined by the 1-block we de�ne
its left-connectivity information to be E0 = ϕ, the empty set. Now ω’s jth proper 1-pattern is de�ned
to be the ordered pair ωj = (Ej ,Ej (ω)), j = 1, . . . , s − 1; its right-most 1-pattern, the ordered pair ωs =

(Es ,Es (ω)); and its left-most 1-pattern, ω0 = (E0,E0(ω)). Hence ω generates a unique sequence of 1-
patterns (ω0,ω1, . . . ,ωs−1,ωs ) and, for convenience, we write ω = (ω0,ω1, . . . ,ωs−1,ωs ). From this we can
de�ne A1, A2, and A3, respectively, as the set of all distinct (up-to x-translation) left-most, proper, and
right-most 1-patterns that result from some ω ∈ PT with span s ≥ 1. We also de�neA0 to be the set of all
ω ∈ PT with span s = 0.

Given two 1-patterns π1 = (S1,1,E1), and π2 = (S2,1,E2), we consider whether E1 followed by E2 is
a possible 2-block of a polygon. Note that S1,1 and E1 induce a pair partitioning for the vertices in the
right-most plane of E1, call this pair partition S1,2. We thus say that π2 can follow π1 (or equivalently, π1
can precede π2) if S1,2 = S2,1 and the right-most plane of E1 is the same as the left-most plane of E2. (Note
that we are allowing π1 to be a left-most pattern or π2 to be a right-most pattern.) We say a sequence of
1-patterns, π1,π2, . . . .,πr , is properly connected if πi+1 can follow πi for each i = 1, . . . , r−1. We refer to the
entire sequence π1, . . . ,πr as an r -pattern. Let tT,r be the number of r -patterns in the tube T, and let tFT,r be
the number of r -patterns whose underlying r -blocks are full. We refer to the latter as full r -patterns. Any
r -pattern which consists of a sequence of proper 1-patterns is called a proper r -pattern. By de�nition, for
each ω ∈ PT (or PH

T , the subset of Hamiltonian polygons) its sequence ω0,ω1, . . . .,ωs−1,ωs of 1-patterns
gives an (s + 1)-pattern (a full (s + 1)-pattern), and for any r ≥ 2, each r -pattern (or full r -pattern) starting
with a left-most 1-pattern (full left-most 1-pattern) and ending with a right-most 1-pattern (full right-most
1-pattern) yields an element of PT (PH

T ) .

Lemma 8. Both r -patterns and full r -patterns have exponential growth rates, and these are equal to βT and
βFT respectively.

Proof. Patterns are distinguished from blocks by the inclusion of left connectivity information. Each r -
pattern corresponds to a unique r -block, but an r -block ω may correspond to multiple r -patterns, as there
may be multiple valid sets of left connectivity information which can be matched to ω. However, observe
that the number of valid sets of left connectivity information is bounded above by a function of the tube
size; namely, the number of pair partitions ofW (ifW is even) orW − 1 (ifW is odd) vertices. This number
is (W − 1)!! ifW is even and (W − 2)!! ifW is odd. Hence

br,T ≤ tr,T ≤ (W − 1)!!br,T.
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Take logs, divide by r and take r →∞, to �nd

lim
r→∞

1
r
log tT,r = βT.

Exactly the same arguments apply to full r -patterns, and we have

lim
r→∞

1
r
log tFT,r = β

F
T. �

With this de�nition of patterns, we can follow the approaches used in [10] to obtain transfer matrices.
We will focus on full patterns, and hence de�ne four setsAF

0 ,AF
1 ,AF

2 , andAF
3 corresponding, respectively,

to those elements ofA0,A1,A2, andA3 which are full. We assign a labelling to the elements of ∪3k=0A
F
k

and denote them as π1,π2, . . . .,πrT . Then we obtain the rT × rT transfer matrixT F(x) for full 1-patterns as
follows: [

T F(x)
]
i, j =

{
xnπi +nπj = xW if πj can follow πi

0 otherwise,

where nπ is the length of the 1-block from which the 1-pattern π was derived, which isW for full 1-blocks.
The generating function for full patterns can be expressed in terms of this transfer matrix as follows:

GF(x) =
∑
s≥1

tFT,sx
sW = tFT,1x

W + xW
∑
i, j

[∑
t ≥0

T F(x)
(
T F(x)

)t ]
i, j

= tFT,1x
W + xW

∑
i, j

[
T F(x)(I −T F(x))−1

]
i, j ,

where tFT,1 = rT. The radius of convergence of GF(x) is given by e−β
F
T/W and can also be determined

by the smallest value of x > 0 which satis�es det(I − T F(x)) = det(I − xWT F(1)) = 0 or equivalently
det(x−W I − T F(1)) = 0, that is, it is given by the largest eigenvalue of T F(1). The generating function for
Hamiltonian polygons can also be expressed in terms of this transfer matrix as follows:

GH(x) =
∑
s≥0

pHT,sx
(s+1)W =

��AF
0
��xW + pHT,1x2W + xW ∑

i, j

[∑
t ≥0

AH(x)
(
T F(x)

)t
BH(x)

]
i, j

=
��AF

0
��xW + pHT,1x2W + xW ∑

i, j

[
AH(x)(I −T F(x))−1BH(x)

]
i, j ,

where the matrices AH(x) (resp. BH(x)) are obtained by �rst labelling the elements of AF
1 (resp. AF

3 ) as
π1,1,π1,2, . . . ,π1,r1,T (resp. π3,1,π3,2, . . . ,π3,r3,T ) and then, for each j = 1, . . . , rT: the i, j entry of AH(x) is
xW if πj can follow π1,i (0 otherwise), i = 1, . . . , r1,T; and the j, i entry of BH(x) is xW if π3,i can follow
πj (0 otherwise), i = 1, . . . , r3,T. We explain next that determining whether or not the conjecture holds is
equivalent to determining whether or not the largest eigenvalue of T F(1) gives the radius of convergence
for GH(x).

For two 1-patterns πi and πj inAF = ∪3k=0A
F
k , we say πj is reachable from πi if for some r there is a full

r -pattern that starts with πi and ends with πj . T F(x) is the weighted adjacency matrix for a directed graph
DF on the set of elements ofAF, and if πj is reachable from πi then there is a directed path from πi to πj in
DF. We say πi and πj communicate if πj is reachable from πi and πi is reachable from πj . Communication
is an equivalence relation which partitionsAF into communication classes that correspond to the strongly
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connected components of the digraph DF. The elements of AF can then be relabelled in such a way that
T F(x) is a block upper triangular matrix where the block matrices along the diagonal are the weighted
adjacency matrices for the strongly connected components of DF (this gives the Frobenius normal form of
T F(x)). Hence the characteristic polynomial ofT F(x) is the product of the characteristic polynomials of the
weighted adjacency matrices for the strongly connected components of DF. (See for example [15, p29-7
and p27-6] or [7, Chapter 3].)

We de�ne the Hamiltonian 1-patterns to be those elements of AF
2 which can be part of a Hamiltonian

polygon; call this subset AH
2 . Note that by de�nition every element of AH

2 is reachable from some ele-
ment of AF

1 . Further, if we consider any two elements πi and πj in AH
2 , then there exists a Hamiltonian

polygonω1 which contains πi and another Hamiltonian polygonω2 which contains πj . The concatenation
construction de�ned earlier in this section can be used to concatenate polygon ω1 to ω2 (or vice versa) to
create a new Hamiltonian polygon with πj reachable from πi (πi reachable from πj ) through elements of
AH

2 . Thus the subdigraph of DF generated by the elements ofAH
2 forms a strongly connected digraph DH

in which every 1-pattern is reachable from every other. We claim further that this subdigraph is a strongly
connected component of DF (i.e. it is a maximal strongly connected digraph). Suppose to the contrary
that there exists a larger strongly connected subdigraph of DF, call it D, which contains DH as a proper
subdigraph. Let πi be in the vertex set of D but not in AH

2 , then πi does not occur in a Hamiltonian poly-
gon, however, πi communicates with every vertex of DH. A contradiction results by taking a Hamiltonian
polygon ω which contains πj ∈ AH

2 and inserting at πj a sequence of properly connected 1-patterns from
πj to πi and then from πi to πj to create a Hamiltonian polygon that contains πi . Thus DH is a strongly
connected component of DF. We call its weighted adjacency matrix the Hamiltonian 1-pattern transfer
matrixTH(x) and it is obtained by restrictingT F(x) (all other rows and columns removed) to the elements
of AH

2 . Thus we also have:

GH(x) =
∑
s≥0

pHT,sx
(s+1)W =

��AF
0
��xW + pHT,1x2W + xW ∑

i, j

[∑
t ≥0

AH∗(x)
(
TH(x)

)t
BH∗(x)

]
i, j

=
��AF

0
��xW + pHT,1x2W + xW ∑

i, j

[
AH∗(x)(I −TH(x))−1BH∗(x)

]
i, j ,

whereAH∗(x) and BH∗(x) are obtained fromAH(x) and BH(x), respectively, by restricting toAH
2 , andTH(x)

will be one of the block matrices along the diagonal in the Frobenius normal form of T F(x). Thus det(I −
T F(x)) = det(I −TH(x))

∏
k≥1 det(I −Tk (x))whereTk (x),k ≥ 1 are the weighted adjacency matrices for the

other strongly connected components of DF. The component which corresponds to the smallest root will
yield the radius of convergence ofGF(x). The conjecture is that this root comes from det(I−TH(x)) = det(I−
xWTH(1)) = 0 and this corresponds to TH(1) having the largest eigenvalue amongst TH(1),Tk (1),k ≥ 1.
For small tube sizes we have veri�ed this conjecture by determining the strongly connected components
and their corresponding adjacency matrices and determining which component(s) determine the radius of
convergence. Table 1 shows the results. In addition to the numerical veri�cations provided in Table 1, in
two dimensions (that is, when M = 0) this conjecture has been veri�ed exactly for L ≤ 5.

5 Summary and Discussion

We have studied a model of self-avoiding polygons restricted to a L × M rectangular tube T of the cubic
lattice Z3, subject to a force f which acts in a direction parallel to the axis of the tube. Without loss of
generality, we assume L ≥ M ≥ 0 and L > 0. When f > 0 the force e�ectively stretches the polygons,
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T size L ×M κHT
next largest
growth rate T size L ×M κHT

next largest
growth rate

3 × 0 0.232905 0 1 × 1 0.329239 0.173287
4 × 0 0.239939 0 2 × 1 0.440750 0.360063
5 × 0 0.288670 0.196889 3 × 1 0.488108 0.443274
6 × 0 0.288344 0.120645 4 × 1 0.515163 0.485601
7 × 0 0.314534 0.263113 2 × 2 0.516565 0.406593
8 × 0 0.313302 0.222208
9 × 0 0.329583 0.296447
10 × 0 0.328358 0.269453
11 × 0 0.339448 0.316341

Table 1: Evidence that κHT = β
F
T/W for small tube sizes.

while when f < 0 the force is compressive. For all values of f one can de�ne a free energy FT(f ). We
have shown that in both limits f → ±∞ the free energy FT(f ) is asymptotic to a linear function of f ,
and we have proved the exact forms of both of these linear functions. In the f → −∞ case the asymptote
can be written in terms of the growth rate of a class of objects we call full s-blocks; we conjecture that
this value is in fact the same as the growth rate of a subclass of polygons, namely Hamiltonian polygons,
which occupy all vertices within a L×M ×N rectangular prism. Using transfer matrix calculations related
to full s-blocks, we establish that the conjecture is true for tube sizes including M = 0 and 1 ≤ L ≤ 11,
M = 1 and 1 ≤ L ≤ 4, and (L,M) = (2, 2).

Note that, if the conjecture holds, then essentially the order of the two limits n → ∞ (polygon length
grows to in�nity) and f → −∞ (the force becomes in�nitely compressive) can be interchanged. When
the conjecture is true, there is at least one consequence of this with respect to the probability of knotting.
Speci�cally, the properties of Hamiltonian polygons presented here in Section 4, have been used previously
in [10, Theorem 4.3] to establish that: for any given proper r -pattern P obtained from a Hamiltonian
polygon in T, all but exponentially few su�ciently large Hamiltonian polygons in T will contain P . Then
for L ≥ 2, M ≥ 1, letting P be an appropriate full tight trefoil pattern c.f. [10, Figure 4.12], this establishes
that all but exponentially few su�ciently large Hamiltonian polygons in T are knotted. Combining this
with the Atapour et al [3] results about knotting for �nite forces f , we have that if the f → −∞ limit is
dominated exponentially by Hamiltonian polygons, then for any force f ∈ [−∞,∞), all but exponentially
few su�ciently large polygons in T will be knotted.
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