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Introduction

Let cn be the number of self-avoiding walks of length n on the square lattice Z2.

cn is known up to n = 79.

A very hard problem!
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Asymptotics

We still know some things about cn. Because any SAW of length m + n can be split
into two smaller ones,

cm+n ≤ cmcn.

Theorem (Hammersley 1957)

The limit
lim

n→∞
c

1/n
n = µ

exists and is equal to infn≥0 c
1/n
n .

That is, the rate of growth of cn is exponential:

Corollary

cn = eo(n)µn.
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Asymptotics

The constant µ is called the growth constant (sometimes connective constant), and
depends on the lattice in question. On the square lattice,

µ ≈ 2.63815853031.

It is not known exactly for any regular lattice in ≥ 2 dimensions, except the honeycomb

(hexagonal) lattice, where µ =
√

2 +
√

2 (Duminil-Copin & Smirnov 2012).

In low dimension the subexponential term is not known exactly, but it is widely
expected to follow a power law.

Conjecture

In 2 dimensions,
cn ∼ Anγ−1µn

The constant A is the amplitude and depends on the lattice, while the exponent γ
should only depend on the dimension. In d = 2 there is good reason to expect
γ = 43/32, while for d ≥ 5 it is known that γ = 1.



Introduction Solvable subclasses Weakly prudent bridges Self-avoiding polygons

Asymptotics

The constant µ is called the growth constant (sometimes connective constant), and
depends on the lattice in question. On the square lattice,

µ ≈ 2.63815853031.

It is not known exactly for any regular lattice in ≥ 2 dimensions, except the honeycomb

(hexagonal) lattice, where µ =
√

2 +
√

2 (Duminil-Copin & Smirnov 2012).

In low dimension the subexponential term is not known exactly, but it is widely
expected to follow a power law.

Conjecture

In 2 dimensions,
cn ∼ Anγ−1µn

The constant A is the amplitude and depends on the lattice, while the exponent γ
should only depend on the dimension. In d = 2 there is good reason to expect
γ = 43/32, while for d ≥ 5 it is known that γ = 1.



Introduction Solvable subclasses Weakly prudent bridges Self-avoiding polygons

Behaviour of the generating function

Define the generating function

C(z) =
∑
n≥0

cnz
n.

Then zc = µ−1 is the radius of convergence of C(z), and (in 2d) we should have

C(z) ∼ A′(1− µz)−43/32

for z ∼ zc and some constant A′.
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Solvable subclasses

We don’t have an expression for cn or the generating function C(z).

Instead, can look for subclasses of SAWs which are solvable. They may

shed light on the overall SAW problem

lead to physical models for which more precise information can be obtained

lead to new techniques for enumeration, analysis, etc.

be interesting in their own right!
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A simple example: partially directed walks

The simplest classes are obtained by forbidding one or more step directions. eg. a
NES-partially directed walk can step ↑,→ and ↓ but not ←.

Easy to construct these recursively:

either a walk has no → steps, and so is empty or just ↑ steps or just ↓ steps; or

a walk has a last → step, and can be decomposed uniquely into a shorter walk
concatenated with → and then a (possibly empty) sequence of ↑ or ↓.

This can be written as an equation involving the generating function P(z):

P(z) = 1 +
2z

1− z
+ z

(
1 +

2z

1− z

)
P(z).
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A simple example: partially directed walks

So

P(z) =
1 + z

1− 2z − z2

= 1 + 3z + 7z2 + 17z3 + 41z4 + 99z5 + 239z6 + . . .

and the number cPDW
n of PDWs of length n is

cPDW
n =

(
−2 +

√
2
)(

1−
√

2
)n

+
(

2 +
√

2
)(

1 +
√

2
)n

2
√

2

∼
1

2

(
1 +
√

2
)(

1 +
√

2
)n
.

So the growth rate here is 1 +
√

2 ≈ 2.4142.

Question: How close can we get to µ ≈ 2.63815853031 with a solvable model?
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Prudent walks

A prudent walk is a SAW which never steps towards an already-occupied vertex.

The end of a prudent walk always lies on the boundary of its bounding box, and this
allows for a sub-classification:

1-sided: after each step, endpoint is on E side of box

2-sided: after each step, endpoint is on N or E sides

3-sided: after each step, endpoint is on N, E or W sides

4-sided: no restriction

1-sided prudent SAWs are also PDWs. 2- and 3-sided have been solved (Duchi 2005,
Bousquet-Mélou 2010), 4-sided remains unsolved.
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Prudent walks

Theorem (Duchi 2005, Bousquet-Mélou 2010)

The numbers of 2- and 3-sided prudent walks are asymptotically

c2-pru
n ∼ A2κ

n and c3-pru
n ∼ A3κ

n

where κ ≈ 2.48119 is the root of a cubic polynomial and A2,A3 are positive constants.

The generating function C2-pru(z) is algebraic (the root of a quadratic with
coefficients in Z[z]), and is solved with the kernel method.

The generating function C3-pru(z) is non-D-finite (cannot be written as the solution of
a linear ODE with coefficients in Z[z]), and is solved with the iterated kernel method.

Conjecture (Dethridge & Guttmann 2008)

The number of 4-sided prudent walks is asymptotically

c4-pru
n ∼ A4κ

n

for some positive constant A4.
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Perimeter walks

Can generalise prudent walks by maintaining the bounding box condition while
relaxing the prudent condition, to get perimeter walks. Then 2-sided perimeter walks
are solvable.

Theorem (B. 2012 (PhD Thesis))

The number of 2-sided perimeter walks is asymptotically

c2-per
n ∼ B2τ

n

where τ ≈ 2.50400 is probably not algebraic and B2 is a positive constant.

The generating function C2-per(z) is almost certainly non-D-finite.
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Self-avoiding bridges

To take things further, we need another definition.

A (2d) self-avoiding bridge is a SAW whose

first vertex has strictly minimal y -coordinate

final vertex has (not strictly) maximal y -coordinate

Any two bridges can be concatenated to
form a longer bridge.

⇒ Any bridge can be uniquely decomposed
into a sequence of irreducible bridges.

Note that we do not consider the empty
walk to be a bridge.
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Self-avoiding bridges

Since every bridge can be uniquely factorised as a sequence of irreducible bridges,

B(z) =
I (z)

1− I (z)

where B(z) is the generating function of bridges and I (z) is the generating function of
irreducible bridges.

This idea can be exploited to get larger solvable classes: Define a class of walks
(bridges) whose irreducible components satisfy some set of properties, which allow
them to be solved.
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Weakly directed walks

A weakly directed walk is a SAW which is partially directed between any two visits to
a horizontal line.

They are (essentially) self-avoiding bridges whose irreducible bridge components are
partially directed.

If IPDW(z) is the generating functions of irreducible partially directed bridges, then

BWD(z) =
IPDW(z)

1− IPDW(z)
.
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Weakly directed walks

IPDW(z) has been solved (Bacher & Bousquet-Mélou 2011).

Theorem (Bacher & Bousquet-Mélou 2011)

The number of weakly directed bridges is asymptotically

bWD
n ∼ Cσn

where σ ≈ 2.5447 is probably not algebraic. The generating function BWD(z) is
non-D-finite.

Can we do better?
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Weakly prudent bridges

An s-sided weakly prudent bridge is a bridge whose irreducible bridge components are
s-sided prudent or co-prudent (prudent in the reverse direction) walks, or
reflections/rotations thereof.

1-sided are weakly directed.

We solve the 2-sided case.

3-sided and 4-sided are the same thing, but remain unsolved.



Introduction Solvable subclasses Weakly prudent bridges Self-avoiding polygons

Weakly prudent bridges

An s-sided weakly prudent bridge is a bridge whose irreducible bridge components are
s-sided prudent or co-prudent (prudent in the reverse direction) walks, or
reflections/rotations thereof.

1-sided are weakly directed.

We solve the 2-sided case.

3-sided and 4-sided are the same thing, but remain unsolved.



Introduction Solvable subclasses Weakly prudent bridges Self-avoiding polygons

Functional equations

Prudent bridges are a special case of positive prudent walks: those whose first vertex
has strictly minimal y -coordinate (upper half plane).

To construct positive prudent walks recursively, need two additional measurements:

distance i from endpoint to NE corner of box

distance j + 1 from endpoint to bottom of box

i

j + 1

i

j + 1

Define N+(z; u, v) and E+(z; u, v) to be the generating functions for those positive
walks ending on the N or E side, with u conjugate to i and v conjugate to j . The
variables u and v are catalytic.

The bridges are those counted by N+.
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Functional equations

Do something similar to PDWs (more complicated!) to get(
1−

zu

u − zv
−

z2u

v − zu

)
E+(z; u, v) = z −

z2v

u − zv
E+(z; zv , v)

−
z2u

v − zu
E+(z; u, zu) + zvN+(z; z, v)(

1−
zuv

u − z
−

z2uv

1− zu

)
N+(z; u, v) =

z

1− zu
−

z2v

u − z
N+(z; z, v) + zE+(z; zv , v)

This can be solved with the iterated kernel method. (Ugly!)

The generating function of 2-sided prudent bridges is N+(z; 1, 1). We want to get at
irreducible bridges. This is not so obvious – the irreducible components of a prudent
bridge must be prudent, but if we concatenate two prudent bridges the result may not
be prudent:
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More functional equations

So we can’t just directly factorize prudent bridges into irreducible prudent bridges.
Have to take a longer route.

Have to consider the subset of bridges which end at the north-east corner of their box.

Then, define a slightly different factorisation...

Use the iterated kernel method on a slightly different functional equation...

Then manipulate some generating functions...
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...then combine with co-prudent, use inclusion-exclusion to account for those bridges
which are both prudent and co-prudent (these are in fact partially directed). Likewise
for reflections/rotations.

The first few terms of the series for the irreducible objects are

I 2-WP(z) = z + 2z2 + 2z3 + 2z4 + 2z5 + 4z6 + 10z7 + 26z8 + 56z9 + 116z10 + O(z11)

Our generating function is then

B2-WP(z) =
I 2-WP(z)

1− I 2-WP(z)
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Growth constant

Generating function is solved but complicated – easier to generate & analyse long
series (6144 terms) using transfer matrix techniques.

Theorem (Bacher & B. 2014)

The number of 2-sided weakly prudent bridges is asymptotically

b2-WP
n ∼ Dφn

where φ ≈ 2.57817 (known to 101 digits) is probably not algebraic.

Similarly to 3-sided prudent and weakly directed:

Conjecture (Bacher & B. 2014)

The generating function B2-WP(z) of weakly prudent bridges is not D-finite.
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Further results & future work

Can generate random weakly prudent bridges with a critical
Boltzmann sampler.

Further generalisations? Solving walk models with more than 2
catalytic variables is often very difficult. (eg. the 3/4-sided prudent
or 2-sided perimeter versions would require 3 catalytic variables).
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Self-avoiding polygons

A (unrooted, undirected) self-avoiding polygon is a closed loop on the lattice.

It is known that these have the same growth rate as SAWs. If p2n is the number of
polygons of perimeter 2n, then

Theorem (Hammersley 1961)

The limit
lim

n→∞
p

1/2n
2n

exists and is equal to µ, the growth rate of SAWs on the lattice.
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Concatenating polygons

Polygons can be freely concatenated, like self-avoiding bridges. We identify the
highest edge on the right side of one polygon with the lowest edge on the left side of
the other, and delete them both:
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Irreducible polygons

Just as with bridges, we can then define an irreducible polygon to be one that cannot
be written as the concatenation of two smaller polygons. Every polygon then has a
unique factorization into irreducible components:
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Irreducible polygons

To employ the same idea as with bridges, we then want to solve the largest possible
class of irreducible polygons, and then concatenate them to generate something new.

Note that the concatenation of two column-convex polygons is also column-convex.
Most promising candidate is then column- and/or row-convex polygons, for which
convexity is usually not preserved after concatenation.

Still a work in progress!
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Reference

Bacher & B., Weakly prudent self-avoiding bridges, Proceedings of FPSAC 2014
(Chicago, USA), 827-838.

Thank you!
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