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The problem is the 342 subsequence.
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Introduction
Knuth 1968 (TAOCP Vol. 1): Which permutations can be sorted using a (infinite capacity) stack?

e.g. 631245:

1223465 ¢&

but 631425:

N/

2
£

The problem is the 342 subsequence. In fact if any permutation o has a length-3 subsequence
0i,0j,0k with i < j < k and o, < 0j < gj, it cannot be sorted using a stack.
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Definition

Let T € Sy and o € S, be permutations with m < n. Then o contains pattern T if there is a
subsequence o, ,...,0; in the same relative order as T. If o does not contain pattern T, then o

m
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Definition

Let T € Sy and o € S, be permutations with m < n. Then o contains pattern T if there is a
subsequence o, ,...,0; in the same relative order as T. If o does not contain pattern T, then o

m

avoids T, or is T-avoiding.

So a permutation o is stack-sortable only if o avoids pattern 231.

In fact the converse is also true:

Theorem (Knuth 1968)

A permutation o € S, is stack-sortable if and only if o avoids pattern 231.

By induction. Trivially true if n =0,1,2, so let n > 3 and say o avoids 231.

Let i be such that o; = n. Then if j < i < k, must have o; < 0.

Now ¢/ =01 ...0i_1 and ¢’ = oj11 ...0, are 231-avoiding. So sort o’, then push o; = n onto
the stack, then sort o//, and pop o; from the stack. O
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Let Av(7) be the set of permutations which avoid pattern 7, and Av,(7) = Av(T) N S,.

o What is an(7) = | Ava(7)|? As n — 07
o Connections between Av(7) and Av(7’) for 7 # 7'7
@ What does a random o € Av(7) “look like"?
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Applications

Theorem (Knuth 1973)

an(t)=Cp = = —]’-— : (2n)

for all T € S3.
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Applications

Theorem (Knuth 1973)

an(t)=Cp = = —]’-— : (2n)

for all T € S3.

The Catalan numbers count many different objects in combinatorics, including Dyck paths, binary
trees, plane trees and parallelogram polyominoes:

7\
// N \\

£3124S & 7V \
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Theorem (Béna 1997)

Av,(1342) is in bijection with the set of rooted bicubic planar maps on 2(n + 1) vertices.

N
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Definition

If T is a list of permutations, then o € Av(T) if o avoids T for all T € T.
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If T is a list of permutations, then o € Av(T) if o avoids T for all T € T.

Theorem (Murphy 2003)

There is an infinite set T such that o is sortable by two infinite stacks in series iff o € Av(T).
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Definition

If T is a list of permutations, then o € Av(T) if o avoids T for all T € T.

Theorem (Murphy 2003)

There is an infinite set T such that o is sortable by two infinite stacks in series iff o € Av(T).

1236 5¢

Theorem (Elder 2006)

There a set T of 20 permutations of size 5, 6, 7 and 8 such that o is sortable by a stack of depth
2 and an infinite stack in series iff o € Av(T).
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Schubert varieties can be indexed by permutations. Certain properties can then be framed in
terms of the permutations.
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Schubert varieties can be indexed by permutations. Certain properties can then be framed in
terms of the permutations.

Theorem (Lakshmibai & Sandhya 1990)

A Schubert variety is smooth iff its permutation o € Av(1324,2143).
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Schubert varieties can be indexed by permutations. Certain properties can then be framed in
terms of the permutations.

Theorem (Lakshmibai & Sandhya 1990)

A Schubert variety is smooth iff its permutation o € Av(1324,2143).

Definition

Let T =71...Tm € Sm be a permutation. Then o avoids the barred pattern 7y ...7; ... Tm If it
avoids Ty ... Ti_1Tiy1...Tm, €xcept as part of an occurrence of T.
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Schubert varieties can be indexed by permutations. Certain properties can then be framed in
terms of the permutations.

Theorem (Lakshmibai & Sandhya 1990)

A Schubert variety is smooth iff its permutation o € Av(1324,2143).

Definition

Let T =71...Tm € Sm be a permutation. Then o avoids the barred pattern 7y ...7; ... Tm If it
avoids Ty ... Ti_1Tiy1...Tm, €xcept as part of an occurrence of T.

Theorem (Bousquet-Mélou & Butler 2007)

A Schubert variety is locally factorial iff its permutation o € Av(1324,21354).
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Other applications

@ Many other sorting problems: stacks in parallel, networks of stacks, queues, deques, ...
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Other applications

Many other sorting problems: stacks in parallel, networks of stacks, queues, deques, ...
Kazhdan-Lusztig polynomials

Duplication-loss model in computational biology

Asymmetric simple exclusion model in statistical mechanics
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Random samples

Also provide an opportunity for development of Monte Carlo methods.
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Random samples

Also provide an opportunity for development of Monte Carlo methods.
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Figure: Random permutation of size 500.
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Random samples

Also provide an opportunity for development of Monte Carlo methods.
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Figure: Random 312-avoiding permutation of size 500. [Madras & Pehlivan, Random Structures and
Algorithms 49 (2016), pp 599-631.]
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Random samples

Also provide an opportunity for development of Monte Carlo methods.
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Figure: Random 4231-avoiding permutation of size 500. [Atapour & Madras, Combinatorics, Probability and
Computing 23 (2014), pp 161-200.]
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Random samples

Also provide an opportunity for development of Monte Carlo methods.
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Figure: Random 4132-avoiding permutation of size 300. [Madras & Yildirim, Electronic Journal of
Combinatorics 24 (2017), #P4.13]
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Enumeration

Interested in finding a,(7) for some list of patterns T, or generalisations thereof.

Nicholas Beaton (Melbourne) Pattern-av g permutations June 27, 2018 12/28



Enumeration

Interested in finding a,(7) for some list of patterns T, or generalisations thereof.

In general this is a hard problem!

Nicholas Beaton (Melbourne) Pattern-avoi permutations June 27, 2018 12/28



Enumeration

Interested in finding a,(7) for some list of patterns T, or generalisations thereof.
In general this is a hard problem!

The pattern-matching problem for permutations 7 and o is to determine whether o contains
pattern 7.
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The pattern-matching problem for permutations 7 and o is to determine whether o contains
pattern 7.

Theorem (Bose, Buss & Lubiw 1998)

For general T and o, the pattern matching problem is NP-complete.
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Enumeration

Interested in finding a,(7) for some list of patterns T, or generalisations thereof.
In general this is a hard problem!

The pattern-matching problem for permutations 7 and o is to determine whether o contains
pattern 7.

Theorem (Bose, Buss & Lubiw 1998)

For general T and o, the pattern matching problem is NP-complete.

But there are some special cases for which this is easier. For example,

Theorem (Chang & Wang 1992)

There is a polynomial time algorithm for the pattern-matching problem for Av(123.. . k).

Theorem (Bose, Buss & Lubiw 1998)

There is a polynomial time algorithm for the pattern-matching problem for Av(2413,3142)
(separable permutations).
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Recall a5(231) = Gy = -7 (%). Why?
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Back to Catalan

Recall 2,(231) = G, = -1 (*"). Why?
Let o € Av,(231), and condition on the position of n. If o; = n, then
o' =o01...0i_1 € Av;_1(231) and ¢’ = 0j;1...0n (after subtracting i — 1 from all values) is

€ Av,_;(231).

Conversely, given any o’ € Av;_1(231) and ¢’ € Av,_;(231), we can construct o € Av,(231) by
shifting o’/ up by i — 1 and concatenating o’no”’.

Summing over all possible values of i,
n
an(231) = > a;_1(231)a,_;(231)
i=1

with a9(231) = 1.

This is the same recurrence satisfied by Cj,.
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Asymptotics

Of course |S,| = nl. How much of a difference does avoiding a pattern 7 make?
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A big difference if 7 € S3, since

n

4
vrn3

an(t)=Cp ~ < n!
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Asymptotics

Of course |S,| = nl. How much of a difference does avoiding a pattern 7 make?

A big difference if 7 € S3, since
4n
=C, ~ |
an(7) = Ca T < n!

In general:

Conjecture (Stanley & Wilf ~ 1990)

For every pattern T, there exists a constant A such that a,(7) < A" for all n.
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Asymptotics

Of course |S,| = nl. How much of a difference does avoiding a pattern 7 make?

A big difference if 7 € S3, since
4n
=C, ~ |
an(7) = Ca T < n!

In general:

Theorem (Marcus & Tardos 2004)

For every pattern T, there exists a constant A such that a,(7) < A" for all n.

Proved by finding a recursive bound on pattern-avoiding matrices.
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Asymptotics

Of course |S,| = nl. How much of a difference does avoiding a pattern 7 make?

A big difference if 7 € S3, since
4n
=C, ~ |
an(7) = Ca T < n!

In general:

Theorem (Marcus & Tardos 2004)

For every pattern T, there exists a constant A such that a,(7) < A" for all n.

Proved by finding a recursive bound on pattern-avoiding matrices.

Corollary (Arratia 1999)

For any T, the limit
lim an(r)/" = ¢(r)
n— oo

exists and is finite.
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Asymptotics

Of course |S,| = nl. How much of a difference does avoiding a pattern 7 make?

A big difference if 7 € S3, since
4n
=C, ~ |
an(7) = Ca T < n!

In general:

Theorem (Marcus & Tardos 2004)

For every pattern T, there exists a constant A such that a,(7) < A" for all n.

Proved by finding a recursive bound on pattern-avoiding matrices.

Corollary (Arratia 1999)

For any T, the limit
lim an(r)/" = ¢(r)
n— oo

exists and is finite.

Sol(t)=4ifT €S
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Theorem (Regev 1981)

(k—1)2n
an(123...k) ~ =Y

for some constant c, so that
0(123.. . k) = (k—1)2
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Theorem (Regev 1981)

(k _ 1)2n
an(123... k) ~ S

for some constant c, so that
0(123.. . k) = (k—1)2

Conjecture (Arratia 1999)

For all T € Sy, £(1) < (k — 1)2.
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Theorem (Regev 1981)

(k—1)2n
an(123...k) ~ =Y

for some constant c, so that
0(123.. . k) = (k—1)2

Conjecture (Arratia 1999)

For all T € Sy, £(1) < (k — 1)2.

Disproved:

Theorem (Albert et al 2006)

£(4231) > 9.47
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Theorem (Regev 1981)

(k—1)2n
an(123...k) ~ =Y

for some constant c, so that
0(123.. . k) = (k—1)2

Conjecture (Arratia 1999)

For all T € Sy, £(1) < (k — 1)2.

Disproved:

Theorem (Albert et al 2006)

£(4231) > 9.47

Some other results are known, but first we need a new definition...
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Wilf equivalence

Definition

Two patterns T and 7' are Wilf equivalent if an(7) = an(7") for all n.
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Two patterns T and 7' are Wilf equivalent if an(7) = an(7") for all n.

So all patterns of length 3 are Wilf equivalent.
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Wilf equivalence

Definition

Two patterns T and 7' are Wilf equivalent if an(7) = an(7") for all n.

So all patterns of length 3 are Wilf equivalent.

For length 4 there are three Wilf equivalence classes, with representatives 1234 (12 patterns),
1342 (10) and 1324 (2).
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Wilf equivalence

Definition

Two patterns T and 7' are Wilf equivalent if an(7) = an(7") for all n.

So all patterns of length 3 are Wilf equivalent.

For length 4 there are three Wilf equivalence classes, with representatives 1234 (12 patterns),
1342 (10) and 1324 (2).

For length 5 there are 16 Wilf equivalence classes.
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Theorem (Gessel 1990)

2129 = e S () () (1D

81\/ 9"

16t

and

an(1234) ~ so £(1234) = 9.
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Theorem (Gessel 1990)

020 = s 2 () () G

81v/3 9"

160 n*’

v
Theorem (Béna 1997)

an(1342) = [complicated expression]

and

an(1234) ~ so £(1234) = 9.

and
64 8"

TEN T 50 £(1342) = 8.

an(1342) ~
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Theorem (Gessel 1990)

020 = s 2 () () G

81v3 9"
160 n*’

and

an(1234) ~ so £(1234) = 9.

Theorem (Béna 1997)

| N\

an(1342) = [complicated expression|

and
64 8"

an(1342) ~ EYENCRTER

s0 £(1342) = 8.

Before we get to Av(1324), another digression...
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Generating functions

Definition

The ordinary generating function (OGF) for a sequence (f)n>0 is

F(z) = Z faz".
n=0
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F(z) has radius of convergence
1
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Generating functions

Definition
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F(z) = Z faz".
n=0

F(z) has radius of convergence
1

P limsup, oo (17

If £ = limp_y00(fa)l/" exists then £ = 1/p.
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Generating functions

Definition

The ordinary generating function (OGF) for a sequence (f)n>0 is

F(z) = Z faz".
n=0

F(z) has radius of convergence
1

P limsup, oo (17

If £ = limp_y00(fa)l/" exists then £ = 1/p.

If F is not entire, then F has a singularity (a point of non-analyticity) at some z € C with
|z| = p. This is the dominant singularity (or singularities).
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If F has a single dominant singularity at z = p, and F(z) ~ A(1 — z/p)® as z — p with A,
constant and a ¢ N, then

. Ana—lp—n _
= W (14 0(n 1))
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Lemma

If F has a single dominant singularity at z = p, and F(z) ~ A(1 — z/p)® as z — p with A,
constant and a ¢ N, then

v
A generating function F is algebraic if there is a non-trivial polynomial P(x,y) € Z[x, y] such
that P(z, F(z)) = 0.

F is D-finite if F(z) is the solution to a linear ODE with coefficients in Z[z].

Every algebraic function is also D-finite.
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Lemma

If F has a single dominant singularity at z = p, and F(z) ~ A(1 — z/p)® as z — p with A,
constant and a ¢ N, then

v

A generating function F is algebraic if there is a non-trivial polynomial P(x,y) € Z[x, y] such
that P(z, F(z)) = 0.

F is D-finite if F(z) is the solution to a linear ODE with coefficients in Z[z].

Every algebraic function is also D-finite.

D-finite functions are “nice” since their coefficients satisfy finite linear recurrences. For example,
the Catalan OGF is algebraic:

>, 1-Vi—4z
C(2) :ZC,,Z =,
n=0 z

and
(n+1)Cy —2(2n—1)Cp—1 = 0.
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Let A (z) be the OGF for a,(7).
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Let A7 (z) be the OGF for a,(7).

Conjecture (Noonan & Zeilberger 1996)

A+ (z) is D-finite for all T.

Nicholas Beaton (Melbourne) ng permutations June 27, 2018 20/28



Ai234(2) is D-finite (satisfies a 3™ order ODE).

A1342(z) is algebraic:
32z

1420z — 822 — (1 —8z)3/2°
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Ai234(2) is D-finite (satisfies a 3™ order ODE).

A1342(z) is algebraic:
32z

1420z — 822 — (1 —8z)3/2°

Much less is known about a,(1324), but it doesn’t look very nice.
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Ai234(2) is D-finite (satisfies a 3™ order ODE).

A1342(z) is algebraic:
32z

1420z — 822 — (1 —8z)3/2°

Much less is known about a,(1324), but it doesn’t look very nice.

Lemma (Bevan 2014; Béna 2014)

9.81 < ¢(1324) < 13.73718
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Ai234(2) is D-finite (satisfies a 3™ order ODE).

A1342(z) is algebraic:
32z
1420z — 822 — (1 —8z)3/2°

Much less is known about a,(1324), but it doesn’t look very nice.

Lemma (Bevan 2014; Béna 2014)

9.81 < ¢(1324) < 13.73718

Current best estimate [Conway, Guttmann & Zinn-Justin 2018]
£(1324) = 11.600 =+ 0.003.

Based on series analysis up to aso(1324).
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Ai234(2) is D-finite (satisfies a 3™ order ODE).

A1342(z) is algebraic:
32z
1420z — 822 — (1 —8z)3/2°

Much less is known about a,(1324), but it doesn’t look very nice.

Lemma (Bevan 2014; Béna 2014)

9.81 < ¢(1324) < 13.73718

Current best estimate [Conway, Guttmann & Zinn-Justin 2018]
£(1324) = 11.600 £ 0.003.

Based on series analysis up to aso(1324).

The asymptotic behaviour appears to be more complicated too:
an(1324) ~ B - pu" - Y -

where p = ¢(1324), u1 = 0.0400 £ 0.0005, g = —1.1 £ 0.1 and B is unknown.
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Ai234(2) is D-finite (satisfies a 3™ order ODE).

A1342(z) is algebraic:
32z
1420z — 822 — (1 —8z)3/2°

Much less is known about a,(1324), but it doesn’t look very nice.

Lemma (Bevan 2014; Béna 2014)

9.81 < ¢(1324) < 13.73718

Current best estimate [Conway, Guttmann & Zinn-Justin 2018]
£(1324) = 11.600 £ 0.003.
Based on series analysis up to aso(1324).
The asymptotic behaviour appears to be more complicated too:
an(1324) ~ B - pu" - Y -
where p = ¢(1324), u1 = 0.0400 £ 0.0005, g = —1.1 £ 0.1 and B is unknown.

This suggests that the generating function is not D-finite.
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Consecutive patterns

Let ca(7) = | Avn(T)|-
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Consecutive patterns
Let ca(7) = | Avn(T)|-

The Stanley-Wilf-Marcus-Tardos theorem is definitely not true for consecutive patterns. But there
is a related result:

Theorem (Elizalde 2006)

n!

i, (40)"—

exists for all T. Moreover 0.7839 < r(7) < 1 if T has size > 3.

So consecutive pattern avoidance is a much weaker restriction than regular avoidance.
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Consecutive patterns
Let ca(7) = | Avn(T)|-

The Stanley-Wilf-Marcus-Tardos theorem is definitely not true for consecutive patterns. But there
is a related result:

Theorem (Elizalde 2006)

n!

i, (40)"—

exists for all T. Moreover 0.7839 < r(7) < 1 if T has size > 3.

So consecutive pattern avoidance is a much weaker restriction than regular avoidance.

Because of this, a new definition will be useful:

Definition

The exponential generating function (EGF) for a sequence (fn)n>0 is

Fz) =Y fnzl

n=0
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Consecutive patterns
Let ca(7) = | Avn(T)|-

The Stanley-Wilf-Marcus-Tardos theorem is definitely not true for consecutive patterns. But there
is a related result:

Theorem (Elizalde 2006)

n!

i, (40)"—

exists for all T. Moreover 0.7839 < r(7) < 1 if T has size > 3.

So consecutive pattern avoidance is a much weaker restriction than regular avoidance.

Because of this, a new definition will be useful:

Definition

The exponential generating function (EGF) for a sequence (fn)n>0 is

Fz) =Y fnzl

n=0

F(z) is D-finite iff F(z) is D-finite.
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For all consecutive patterns of length two and three, and 16 of the 24 for length four, ODEs for
the reciprocals of the EGFs are known [Elizalde & Noy 2003, 2012]. Also for many of length > 5.
(Why reciprocals? Stay tuned...)
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the reciprocals of the EGFs are known [Elizalde & Noy 2003, 2012]. Also for many of length > 5.
(Why reciprocals? Stay tuned...)

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case
for EGF itself, e.g. for o = 123.)
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For all consecutive patterns of length two and three, and 16 of the 24 for length four, ODEs for
the reciprocals of the EGFs are known [Elizalde & Noy 2003, 2012]. Also for many of length > 5.
(Why reciprocals? Stay tuned...)

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case
for EGF itself, e.g. for o = 123.)

Let €. (z) be the EGF for sequence c,(7).

Theorem (B., Conway & Guttmann 2018)

1/@1423(2) is not D-finite.
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For all consecutive patterns of length two and three, and 16 of the 24 for length four, ODEs for
the reciprocals of the EGFs are known [Elizalde & Noy 2003, 2012]. Also for many of length > 5.
(Why reciprocals? Stay tuned...)

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case
for EGF itself, e.g. for o = 123.)

Let €. (z) be the EGF for sequence c,(7).

Theorem (B., Conway & Guttmann 2018)

1/@1423(2) is not D-finite.

A useful fact:

If f(z) is a D-finite function then f has a finite number of singularities in C.
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For all consecutive patterns of length two and three, and 16 of the 24 for length four, ODEs for
the reciprocals of the EGFs are known [Elizalde & Noy 2003, 2012]. Also for many of length > 5.
(Why reciprocals? Stay tuned...)

Led some to conjecture that the reciprocal of the EGF is always D-finite. (Definitely not the case
for EGF itself, e.g. for o = 123.)

Let €. (z) be the EGF for sequence c,(7).

Theorem (B., Conway & Guttmann 2018)

1/@1423(2) is not D-finite.

A useful fact:

If f(2) is a D-finite function then f has a finite number of singularities in C.

If Pk(z)f(")(z) is the highest-order term in the ODE satisfied by f, then every singularity of f
must be a root of P,. O

Nicholas Beaton (Melbourne) Pattern-avoiding permutations June 27, 2018 23/28



Why reciprocals?

Given pattern o of length m, a k-cluster of length n w.r.t. o is a pair (w, S) where
@ 7 is a permutation of length n,
e S=(s1=1,5,...,5x = n— m+ 1) is an sequence of indices such that s; —s;_1 < m, and

® (7s;,...,Ts;+m—1) is order-isomorphic to o for each i =1,..., k.
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@ 7 is a permutation of length n,
e S=(s1=1,5,...,5x = n— m+ 1) is an sequence of indices such that s; —s;_1 < m, and

® (7s;,...,Ts;+m—1) is order-isomorphic to o for each i =1,..., k.

So 7 is a permutation which is covered by k overlapping occurrences of the pattern o.
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Why reciprocals?

Given pattern o of length m, a k-cluster of length n w.r.t. o is a pair (w, S) where
@ 7 is a permutation of length n,
e S=(s1=1,5,...,5x = n— m+ 1) is an sequence of indices such that s; —s;_1 < m, and

® (7s;,...,Ts;+m—1) is order-isomorphic to o for each i =1,..., k.

So 7 is a permutation which is covered by k overlapping occurrences of the pattern o.

e.g. (162534978, (1,3,6)) is a 3-cluster of length 9 w.r.t o = 1423.
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Why reciprocals?

Given pattern o of length m, a k-cluster of length n w.r.t. o is a pair (w, S) where
@ 7 is a permutation of length n,
e S=(s1=1,5,...,5x = n— m+ 1) is an sequence of indices such that s; —s;_1 < m, and
® (7s;,...,Ts;+m—1) is order-isomorphic to o for each i =1,..., k.

So 7 is a permutation which is covered by k overlapping occurrences of the pattern o.

e.g. (162534978, (1,3,6)) is a 3-cluster of length 9 w.r.t o = 1423.

Let r, (o) be the number of k-clusters of length n w.r.t. o.
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Why reciprocals?

Given pattern o of length m, a k-cluster of length n w.r.t. o is a pair (w, S) where
@ 7 is a permutation of length n,
e S=(s1=1,5,...,5x = n— m+ 1) is an sequence of indices such that s; —s;_1 < m, and

® (7s;,...,Ts;+m—1) is order-isomorphic to o for each i =1,..., k.

So 7 is a permutation which is covered by k overlapping occurrences of the pattern o.
e.g. (162534978, (1,3,6)) is a 3-cluster of length 9 w.r.t o = 1423.
Let r, (o) be the number of k-clusters of length n w.r.t. o.

Define n
N V4

RO-(Z) = Z r,,’k(—l)km

n,k )
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Why reciprocals?

Given pattern o of length m, a k-cluster of length n w.r.t. o is a pair (w, S) where
@ 7 is a permutation of length n,
e S=(s1=1,5,...,5x = n— m+ 1) is an sequence of indices such that s; —s;_1 < m, and

® (7s;,...,Ts;+m—1) is order-isomorphic to o for each i =1,..., k.

So 7 is a permutation which is covered by k overlapping occurrences of the pattern o.
e.g. (162534978, (1,3,6)) is a 3-cluster of length 9 w.r.t o = 1423.
Let r, (o) be the number of k-clusters of length n w.r.t. o.

Define n
N V4
RO-(Z) = Z r,,’k(—l)km

n,k

Theorem (Goulden & Jackson 1983)

“E =1 R
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For some patterns, the cluster numbers satisfy recurrence relations.

Nicholas Beaton (Melbourne) tern-avoidi

permutations




For some patterns, the cluster numbers satisfy recurrence relations.

e.g. For 7 = 123: In a k-cluster, the last incidence of T overlaps the previous one by one or two
positions, so
fnk = In—1,k—1+ —2k-1
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For some patterns, the cluster numbers satisfy recurrence relations.

e.g. For 7 = 123: In a k-cluster, the last incidence of T overlaps the previous one by one or two
positions, so
fnk = In—1,k—1+ —2k-1

For 7 = 1423: In a k-cluster, condition on the first m incidences of T overlapping by two positions:

n—m-—2
I'n,k = § ( n—2m—1,k—m-
m
4<2m+2<n
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Let R, (x) be the ordinary version of R:

R-(x) = Z r,,,k(—l)kx"
n,k
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Let R, (x) be the ordinary version of R:

R-(x) = Z r,,,k(—l)kx"
n,k

Lemma (Elizalde & Noy 2012)

Let S(x) =14 x + Ria23(x). Then

S(X):1+1ixs(1fxz). 1)
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Let R, (x) be the ordinary version of R:

R-(x) = Z r,,,k(—l)kx"
n,k

Lemma (Elizalde & Noy 2012)

Let S(x) = 1+ x + Riaz3(x). Then

S(X):1+1ixs(1fxz). 1)

We solve S(x) and show it has an infinite number of singularities in C, implying that S(x), and
hence 1/61423(2), is not D-finite.
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Let R, (x) be the ordinary version of R:

R-(x) = Z r,,,k(—l)kx"
n,k

Lemma (Elizalde & Noy 2012)

Let S(x) = 1+ x + Riaz3(x). Then

S(X):1+1ixs<1fxz). 1)

We solve S(x) and show it has an infinite number of singularities in C, implying that S(x), and
hence 1/61423(2), is not D-finite.

Note that (1) can be iterated by taking

X’—)L = S(L> intermsof S [ ———— |, etc.
14 x2 14 x2 1 x )
+ R S—
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Note that (1) can be iterated by taking
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+ R S—

@ Show that S(x) can be solved by iteration — infinite sum of rational functions

Nicholas Beaton (Melbourne) Pattern-avoiding permutations June 27, 2018



Let R, (x) be the ordinary version of R:

R-(x) = Z r,,,k(—l)kx"
n,k

Lemma (Elizalde & Noy 2012)

Let S(x) = 1+ x + Riaz3(x). Then

S(X):1+1ixs(1fxz). 1)
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@ Show that each of the denominators has a distinct root in C
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Let R, (x) be the ordinary version of R:

R-(x) = Z r,,,k(—l)kx"
n,k

Lemma (Elizalde & Noy 2012)

Let S(x) = 1+ x + Riaz3(x). Then

S(X):1+1ixs(1fxz). 1)

We solve S(x) and show it has an infinite number of singularities in C, implying that S(x), and
hence 1/61423(2), is not D-finite.

Note that (1) can be iterated by taking

X’—)L = S(L> intermsof S [ ———— |, etc.
14 x2 14 x2 1 x )
+ R S—

@ Show that S(x) can be solved by iteration — infinite sum of rational functions
@ Show that each of the denominators has a distinct root in C

© Show that each root is not cancelled by the numerator — genuine pole
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Generalisation to longer patterns

The argument generalises to consecutive patterns of the form
1m23...(m—2)(m—1).

= Infinite family of consecutive patterns for which the reciprocal of the EGF is not D-finite.
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NRB, A R Conway & A J Guttmann: On consecutive pattern-avoiding permutations of length 4,
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Thank you!
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