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Colloidal suspensions

Colloidal particles in suspension (eg. globules of milk) can be stabilised by polymers in the
suspending solution.

The polymers may be attracted to the colloidal particles, but this attraction is balanced by
entropy which causes them to push the particles apart and prevent them from sticking together.

This process is known as steric stabilisation.
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Modelling with SAWs

A simple but powerful model of a polymer in solution is the self-avoiding walk (SAW). To model
polymers interacting with colloidal particles, we assume the particles are much larger than the
polymers. Then place the SAW in a strip of the lattice (in 2D) or slab (in 3D) of finite width w :

Suppose a SAW φ starts on the lower wall, accrues weight a with each visit to the bottom wall
and weight b with each visit to the top wall. Let va(φ) and vb(φ) be the number of visits to each
wall.

The partition function is

Zw,n(a, b) =
∑

φ∈Ww,n

ava(φ)bvb(φ)

with limiting free energy

κw (a, b) = lim
n→∞

1

n
log Zw,n(a, b).

Nicholas Beaton (Melbourne) Semi-flexible polymers in a strip December 3, 2019 3 / 16



SAW cont’d

Theorem (Janse van Rensburg et al 2006)

The free energy κw (a, b)

exists for all a, b ≥ 0,

is continuous, increasing and almost-everywhere differentiable in a and b

is increasing with w if a ≤ 1 or b ≤ 1

approaches F(a) as w →∞ if b ≤ 1, where F(a) is the half-plane free energy (and vice
versa)

Note that there exists ac > 1 such that F(a) is constant for a < ac and increasing for a > ac .

Conjecture (Janse van Rensburg et al 2006)

lim
w→∞

κw (a, b) = max{F(a),F(b)} =

{
F(a) a ≥ b

F(b) a < b
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SAW cont’d

For each w there is a zero-force curve in (a, b)-space where κw (a, b) = κw−1(a, b): the entropic
loss from the strip constraint is balanced by the energy gained from visiting the walls. These
curves are expected to approach a limiting curve as w →∞.

[Owczarek et al 2009]
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A solvable version: directed walks
SAW model can be solved exactly for small w (finite transfer matrix) but for larger w this is
untenable. Some Monte Carlo work has been done (eg. [Janse van Rensburg et al 2005]).

[Brak et al 2005] looked at a simpler model which can be solved exactly: directed walks.

Define partition function Ww,n(a, b) for walks of length n, and then the generating function

Gw (z; a, b) =
∑
n≥0

Ww,n(a, b)zn.

These can be solved using either the kernel method or recurrences in w (more later).

The free energy δw (a, b) is then connected to the radius of convergence z∗w (a, b) of Gw via

δw (a, b) = − log z∗w (a, b)

They defined the force to be

Fw (a, b) =
∂

∂w
δw (a, b).
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Directed paths cont’d
To solve this with the kernel method, generalise the partition functions to Ww,n,h(a, b), where h
is the height of the endpoint. Then

Gw (z; s; a, b) =
∑
n,h≥0

Ww,n,h(a, b)znsh.

Also let G
[h]
w (z; a, b) = [sh]Gw (z; s; a, b).

By appending one step at a time, this satisfies the functional equation

Gw = 1 + z(s + s)Gw − zsG
[0]
w − zsw+1G

[w ]
w + z(a− 1)G

[1]
w + zsw (b − 1)G

[w−1]
w

where s = 1
s

.

With

σ =
1−
√

1− 4z2

2z

the kernel method yields

G
[0]
w =

(σ2 + 1)((σ2 + 1− b)σ2w + (σ2b − σ2 − 1))

(σ2 + 1− a)(σ2 + 1− b)σ2w − (σ2a− σ2 − 1)(σ2b − σ2 − 1)

This is rational (not obvious from this expression).

Easy to show that the radius of convergence does not depend on final vertex height.
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Directed paths cont’d
δw (a, b) can be computed exactly for a few values:

δw (1, 1) = log 2 + log cos
(

2π
w+2

)
δw (1, 2) = δw (2, 1) = log 2 + log cos

(
π

w+1

)
and when ab − a− b = 0,

δw (a, b) = log
(

a√
a−1

)
.

Asymptotics can be computed for other values.

[Owczarek et al 2009]
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Varying the flexibility

We can introduce a parameter c to control the flexibility or stiffness of the polymers: each
consecutive pair of collinear steps gets weight c.

Partition functions become Ww,n,h(a, b, c) and generating function Gw (z; s; a, b, c).

But now when appending a step we need to know what the previous step was:
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Solving the system
Need to separately count paths according to whether the last step was down or up:

Gw (z; s; a, b, c) = Dw (z; s; a, b, c) + Uw (z; s; a, b, c)

Then we get a pair of functional equations:

Dw = 1 + zs
(
cDw + Uw

)
− zscD

[0]
w + z(a− 1)

(
cD

[1]
w + U

[1]
w

)
Uw = zs

(
Dw + cUw

)
− zsw+1cU

[w ]
w + zsw (b − 1)

(
D

[w−1]
w + cU

[w−1]
w

)
Can still be solved with the kernel method, but more complicated now:

D
[0]
w =

1

Bw

(
τ2w (τ − cz)(1− b + bczτ) + τ2(czτ − 1)((1− b)τ + bcz)

)
U

[w ]
w =

1

Bw
bcτw+1(τ2 − 1)z2

where

Bw = τ2w (τ − cz)(1− a + aczτ)(1− b + bczτ) + τ(czτ − 1)((1− a)τ + acz)((1− b)τ + bcz)

τ =
1− z2 + c2z2 ±

√
(1− z2 + c2z2)2 − 4c2z2

2cz

Easy to show that the radius of convergence does not depend on final step height or direction, so

we can focus on U
[w ]
w

⇒ interested in roots of Bw .
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Zero-force surface
If there are (a, b, c) values where the radius of convergence is independent of w , this is where the
force is 0.

Turns out this happens iff

(τ − cz)(1− a + aczτ)(1− b + bczτ) = τ(czτ − 1)((1− a)τ + acz)((1− b)τ + bcz) = 0,

which has solution

ab − a− b − c2 + 1 = 0 and z = z∗ =

√
a− 1√

a(a + c2 − 1)

if a, b > 1. This defines a zero-force surface in (a, b, c)-space:
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Long-ranged force
Can show that the force is long-ranged (and positive) when |τ(zw )| = 1. This happens for small
a, b:

a <
(c + 1)(w − 1)

w − c − 1
and b <

(c + 1)(a− aw + (c + 1)(c + w − 1))

a(c − w + 1) + (c + 1)(w − 1)

0 1 2 3 4 5 6
a0

1

2

3

4

5

6
b

(a) c = 2, w = 3, . . . , 15 (b) w = 5

As w →∞ the boundary becomes piecewise planar: a = c + 1 and b = c + 1.

Inside this region

zw =
1

c + 1
+

π2c

2(c + 1)w2
+
π2c

(
ab − a− b − c2 + 1

)
(c − a + 1)(c − b + 1)w3

+ O

(
1

w4

)
Fw =

π2c

w3
+

3π2c(c + 1)
(
ab − a− b − c2 + 1

)
(c − a + 1)(c − b + 1)w4

+ O

(
1

w5

)
.
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Short-ranged force

On the boundary between long- and short-ranged, the force is also long-ranged but with slightly
different asymptotics.

In the short-ranged region, can deduce the exponential rate of decay, and then substitute to
obtain coefficients.

If a > b, set

Λ =

√
ac√

(a− 1)(a + c2 − 1)
.

Then

zw =

√
a− 1√

a(a + c2 − 1)

(
1−

((a− 1)2 − c2)2(ab − a− b − c2 + 1)

2ac2(a− 1)(a− b)(a + c2 − 1)
Λ2w + O(Λ4w )

)
Fw =

((a− 1)2 − c2)2(ab − a− b − c2 + 1) log Λ

ac2(a− 1)(a− b)(a + c2 − 1)
Λ2w + O(Λ4w )

If a < b then just swap a and b.

If a = b then the force is still short-ranged but with different asymptotics.
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Force diagram for fixed c

1 2 3 4 5 6
a

1

2

3

4

5

6

b

I II

II

III

III

IV

V

V VI

c = 2

I & II: long-ranged positive force

III: short-ranged positive force

IV: zero-force surface

V: & VI: short-ranged negative force
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Future work

Could use Motzkin paths instead (diagonal up, diagonal down, and horizontal steps). Should still
be exactly solvable.

Alternatively could move to directed paths in Z3, taking steps +x ,+y ,+z and confined to

x + y

2
≤ z ≤

x + y

2
+ w .

Or partially directed walks (N, S, E).

Instead of weighting for stiffness/flexibility, can use SAWs or PDWs and put a weight u on
nearest-neighbour contacts. As u increases, polymers form globules ⇒ still push harder on walls,
but scaling should be totally different. Much harder to solve...

Or (eek!) use weights for both stiffness and nearest-neighbour contacts.

Nicholas Beaton (Melbourne) Semi-flexible polymers in a strip December 3, 2019 15 / 16



Reference

arXiv:1912.00151

Thank you!

Nicholas Beaton (Melbourne) Semi-flexible polymers in a strip December 3, 2019 16 / 16


