Partition function zeros of adsorbing walk models
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Introduction: Fisher zeros

For your favourite statistical mechanical model, define the partition function for a size-n system as

Z,(8) = Y e PE

we,

where
@ Q, is the set of all size-n configurations
@ E(w) is the energy of configuration w

@ 3 =¢€/KkT and € is the energy per interaction

Zn(B) is a polynomial in e=# with non-negative coefficients.
The roots of Z,(8) in the complex -plane are the Fisher zeros.

These have been studied for a wide range of models, including
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Models of trapped ideal bosons
[W. van Dijk, C. Lobo, A. MacDonald

& R.K. Bhaduri, Can. J. Phys. 93
(2015), 830-835]
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Introduction: Fisher zeros

The Ising model (with
nearest-neighbour and
next-nearest-neighbour interactions)

[S-Y. Kim, Phys. Rev. E 81 (2010),
031120]
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Introduction: Fisher zeros

The Fisher zeros can give information about the critical behaviour of the model.

For example, because Z,(8) is polynomial with non-negative coefficients, there are no zeros on
the real axis. But as n gets large, the zeros closest to the real axis approach the critical point Sc.

Moreover, if we sort the zeros according to their (positive) argument, then the k-th zero 8, is
expected to behave as
Bak ~ B +ckn™? +o(n™?)

where ¢ is the crossover exponent and ¢, € C is a constant.

These have been used in the past to estimate 3. and ¢, among other things.
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Introduction: Adsorbing walks

Linear polymers in a good solvent, terminally attached to an impenetrable surface, can undergo
an adsorption phase transition at a critical temperature.

e
NN\

These can be studied using various lattice and off-lattice models. In particular, self-avoiding walks
on a half-space of the square or cubic lattices:

In this case, E(w) is the number of vertices in the surface (except the initial one), and the
partition function can be written as

Z,(a) = Z af@) where a=e P

lwl=n
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Introduction: Adsorbing walks

The free energy is
. 1
k(a) == nIme - log Zs(a).

This exists for all a > 0, is continuous and almost-everywhere differentiable, and has a point of
non-analyticity at a critical point ac. This is estimated to be

ac = 1.775615 (2D) [Guttmann, Jensen & Whittington 2014]
ac ~ 1.306 (3D) [Janse van Rensburg 2016]
The behaviour near ac is (expected to be) governed by the crossover exponent ¢:
+

k(a) — k(ac) ~ (a— ac)%, a— al

In 2D ¢ is predicted to be exactly %; it has been proposed that ¢ may be % in all dimensions, but
(some) numerical evidence in 3D disputes this...
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Fisher zeros for adsorbing SAWSs

Janse van Rensburg [2017] used Monte Carlo methods (namely flatGAS) to estimate c,(v), the
number of SAWs of length n with v visits to the surface, on the square and cubic lattices. This
then gave estimates of the partition functions Z,(a). The locations of the zeros in the complex
a-plane were then computed. In the square lattice:
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Fisher zeros for adsorbing SAWSs

An examination of the leading zero as n gets large produced mixed results:

25 e e Leading zero a;
4 T While the approach to the real axis
5 . does match a crossover exponent
i b= %, fitting to a quadratic gives the
15 estimate ac &~ 1.8049, a fair way off
i the current best estimate
14 ac = 1.775615.
05: [Janse van Rensburg, J. Stat Mech.
) (2017) 033208]
0 |
16 2.2

Similar results were found for the cubic lattice.
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Fisher zeros for adsorbing directed walks

We then decided to take a completely different approach: what happens for a solvable model?
Can we “go backwards” and prove things about the zeros?

eg. For the 2D Ising model (with only nearest-neighbour interactions), the zeros all accumulate
on two circles of radius v/2 centered on +1 [Fisher 1965] (see earlier figure).

The simplest model of polymer adsorption uses interacting Dyck paths:

The partition functions Ds(a) of 2n-step paths satisfy a two-term recurrence
2a%(2n 4 1)Dy(a) — [2(a — 1)(2n + 1) + a%(n + 2)]Dyy1(a) + (a — 1)(n 4 2)Dyi2(a) = 0

with solution
n

B 2041 ;20N\,
Dn(a)_;7n+é+l(n+z)(a 1)~.

and generating function

D) =3 Dul@)" = 5 =y
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Fisher zeros for adsorbing directed walks

With an exact solution to D,(a), the zeros can be computed exactly for large n.

They behave quite differently to adsorbing SAWs:

n=25
« n=50
e n=100
e n=150
e n=200
e n=300

This curve looks a bit like a cardioid...
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The limiting curve

... but in fact it is not a cardioid — it is the outer lobe of a limagon:

This curve is the locus of points satisfying
3i 32 —4
a—1

and is parametrised by a = x + iy with

— 0

5 3 x:2+(2\@—4cos¢)cos¢
y= (2\@7 4cos¢>) sin ¢
—3i

for ¢ € [0, 27).

Why? The generating function has two singularities in the complex z-plane, depending on the
value of a. They lead to the asymptotic growth rate

_ N 4, if|-2
lim Dy(a)r =p(a) =3

a—1’

<4orla—-1/<1,;

a—1

o |

a
a—1

if

>4and |a—1] > 1.

The outer lobe is exactly the boundary between the two different growth regimes of Dj,(a).
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The limiting curve

If |[a— 1| > 1 then the two singularities contribute to the asymptotics of Dp(a). Roughly,
a2 \" 3
Dy(a) ~ G (—1) + GnT24"(1+ 0(n7 YY)
a_

for constants Cy, C.

If Dn(a};) = 0 then these two terms must cancel. As n — oo the two exponential terms must
(a3)?

balance, so |- — 4.
an—l

With more work, can show that the zeros become dense on the limagon, ie. for any point p # 2
on the limagon and € > 0, there is an N such that D,(a) has a zero inside the ball |p — a| < € for
all n > N.
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The critical point

Dyck paths undergo an adsorption transition at a = ac = 2.

The limagon meets the real axis here at an angle of 45°. D,(a) has no positive real zeros, but the
zeros “pinch” the real axis at a = 2.

However the first (or k-th) zero does not approach a = 2 along the limagon:

25+

-1.0 -0.5 0.0 0.5 1.0 20 25

So how does it behave?
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The leading zero

The crossover exponent for Dyck paths is ¢ = % so take Dn(2 + \%)
n k

Dn(2+ f) - Zg nz—fz_-:l (nz—:2> (i) ni/2

Using Stirling’s approximation etc. this can be (carefully) approximated with an integral, which
can be evaluated. The result is

Da(2+ <) ~ (2 FevmeT (14 erf(g))) . ()

4n
2\/7n
The leading zero then behaves like 2 + C—Dn where ¢y € C is the root of (x) closest to 0.

Approximately
cop = 2.450314191845586... + 5.094256056412729... X i

Further terms in the approximation can be obtained by setting a =2 + \[ + Cl etc.
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SAWs vs. Dyck paths

Why the big difference between SAWs and Dyck paths?

The Dyck path generating function has only two singularities, and the zeros are drawn to the
region in C where the exponential contributions of these two singularities balance, ie. the limagon.

More generally, for a g.f. with s < oo singularities, the complex a-plane (=~ complex T plane) can
be partitioned into regions determined by which singularity is dominant. The zeros are then
drawn to the boundaries of these regions.

But the g.f. for SAWs is believed to have infinitely many singularities, or even uncountably many.
So the partition function zeros may not be drawn to well-defined curves.
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Other models

There are lots of other solvable models, e.g. pulled ballot paths,

adsorbing and/or self-interacting partially directed walks, staircase polygons, prudent walks, etc
etc. What other pictures can emerge?
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Thank you!
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