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Introduction: Fisher zeros

For your favourite statistical mechanical model, define the partition function for a size-n system as

Zn(β) =
∑
ω∈Ωn

e−βE(ω)

where

Ωn is the set of all size-n configurations

E(ω) is the energy of configuration ω

β = ε/kT and ε is the energy per interaction

Zn(β) is a polynomial in e−β with non-negative coefficients.

The roots of Zn(β) in the complex β-plane are the Fisher zeros.

These have been studied for a wide range of models, including
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Introduction: Fisher zeros

square lattice ac(L) or pc(L) denotes the closest zero to the
antiferromagnetic critical point or edge singularity. Based on
the finite-size scaling law of the partition function zeros near
the critical point !57,58" we expect

Im!ac#L $"%L!yt, #28$

from which we can estimate the thermal exponent yt(L) for
finite lattices as !27,38,39,46,52"

yt#L $"!
ln&Im!ac#L#1 $"/Im!ac#L $"'

ln!#L#1 $/L"
. #29$

Table VI shows the thermal exponents yt(L) of the Ising
(Q"2) antiferromagnet and the three-state Potts antiferro-
magnet for free boundary conditions. By using the BST algo-
rithm we extrapolated our results for yt(L) to infinite size for
2(Q(3. Figure 13 shows the thermal exponent yt of the
Potts antiferromagnet by the BST estimates with )"1 #the
parameter of the BST algorithm$ for free boundary condi-
tions. For the BST extrapolation of finite-size results of the
Potts antiferromagnet we prefer free boundary conditions to
other boundary conditions. The reason for this is that, even
though finite-size effects are larger for free than cylindrical
boundary conditions, the edge singularity approaches the

critical point monotonically only if we consider a sequence
of lattices with L even. For free boundary conditions this is
not a problem and the increased effectiveness of the BST
algorithm with longer sequences more than compensates the
stronger finite-size effects !23,27". In Fig. 13 there are two
BST estimates for Q"3. The upper estimate resulted from
data for L"3–8, while the lower one uses L"3–12. In Fig.
13 the continuous curve is the fit to the BST estimates with

yt"
1#Au#Bu2

C#Du , #30$

where

u"!
2
*
cos!1!Q

2 , #31$

and A"!2.2821, B"!7.4390, C"3.9818, and D
"7.4011. The variable u arises naturally in the expressions
for the free energy f c!!(*/2)u" at the ferromagnetic !2" and
antiferromagnetic !10" critical temperatures, and in the criti-
cal exponents yt !3,5,27" and yh !4,5" of the ferromagnetic
Potts model. The form used in Eq. #30$ has also been used to
describe the critical exponent yh of the ferromagnetic Potts
model !4".

FIG. 9. BST extrapolation of Qc
FM as a function of a for self-

dual boundary conditions. The continuous curve is given by Qc
"(a!1)2.

FIG. 10. The exponent yq as a function of a for free, cylindrical,
and self-dual boundary conditions. The slight horizontal offset for
data for cylindrical and self-dual boundary conditions is for clarity
only. The long-dashed curve is the thermal exponent yt by the den
Nijs formula.

FIG. 11. Fisher zeros in the complex p plane of the three-state
Potts model on 12$12 square lattice with free boundary conditions.
The dashed line is the antiferromagnetic interval.

FIG. 12. Fisher zeros in the complex p plane of the Q"2.5 Potts
model on 8$8 square lattice with free boundary conditions. The
dashed line shows the antiferromagnetic interval.

DENSITY OF STATES, POTTS ZEROS, AND FISHER . . . PHYSICAL REVIEW E 63 066107

066107-9

Q-state Potts model

[S.-Y. Kim & R.J. Creswick, Phys.
Rev. E 63 (2001), 066107]
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Introduction: Fisher zeros

It is also straightforward to include the effect of interaction in
the unitary gas at temperatures spanning the degenerate regime,
as was done for the fermionic gas in [13–15]. This is done by using
virial cluster formalism in the grand canonical partition function.
Note that

ln Z(!, z) " Z1(!)!
l" 1

∞

blz
l (7)

where bl is the lth order cluster integral, and b1 = 1. We start with
exponentiating (7). On further expanding the exponential in a
power series of z, and equating the series power by power to the
series given by (3),

Z(!, z) " 1 # zZ1(!) # z2Z2(!) # z3Z3(!) # … (8)

we obtain, after some algebra,

ZN(!) "
1
N !

k" 1

N

kbkZ1(!)ZN$ k(!) (9)

where

bk " bk
0 # %bk (10)

where bk
0 is the statistical, and %bk the interaction, part of the

kth-order virial coefficient. For ideal (noninteracting) bosons, re-
placing bk by bk

0 in (9), we obtain (6), with

bk
0 "

1
k

Z1(k!)

Z1(!)
(11)

With these temperature-dependent virial coefficients in (9) we
recover the exact canonical partition function for the ideal Bose
system. We show the ! dependence of bk

0"!#for ideal boson sys-
tems in Fig. 2. The curves have zero slope at ! = 0, because in the
high-temperature limit bk

0 = 1/k4.

3.2. Fisher zeros for ideal bosons
We first find the complex zeros of the canonical partition

function ZN(!) for noninteracting bosons in an isotropic three-
dimensional harmonic oscillator. For a fixed N, the number of zeros
on the complex plane, denoted !r, is finite. Therefore ZN(!) may be
expressed as a finite product, as in (2) [1]. For ideal bosons, we use
recursion relation (6). The calculation of ZN(!) for the exact case
may be simplified by introducing [25] y = e–!!& so that

ZN(y) "
y3N/2

$j" 1

N
(1 $ y j)3

PN(y) (12)

with P0(y) = P1(y) = 1. PN(y) is a polynomial in y and when it is zero so
is ZN(y). Because PN(y) is a polynomial the number of zeros is equal
to its degree, which increases rapidly with particle number. For
example, for N = 50 ideal bosons, there are 3495 zeros. We deter-
mine a subset to give a clear indication that the pattern of zeros
pinches the positive real ! axis. For the continuum approximation,
by contrast, one gets a polynomial in !, and for N ideal bosons, the
number of zeros is 3(N – 1).

In Fig. 1 we display the Fisher zeros on the complex ! plane for
N = 100 and 50 ideal bosons, using the exact Z1(!) given by (4). Even
for N = 50, there is a tendency for the zeros to approach the real-!
axis, signalling condensation. For N = 100 ideal bosons, this ten-
dency is more pronounced. For an ideal Bose gas in an isotropic
three-dimensional harmonic oscillator, the BEC condensation tem-
perature is given by [26]

kBTc
0 % (0.94N1/3 $ 0.69) (13)

This yields, for N = 50, !c = 0.36; and for N = 100, !c = 0.27, where we
have set kB = 1. These are in agreement with the estimates from
Fig. 1.

Note that the statistical virial coefficients, given by (11), are now
temperature dependent. Only at high temperatures do they be-
come temperature independent, as we shall show. We have veri-
fied numerically that we get identical Fisher zeros of the ideal
Bose gas by using (9), with bk replaced by bk

"0#, but retaining the
proper temperature dependence of the statistical coefficients.
This is of course obvious analytically, but an important first step
in introducing interactions. In the high temperature limit, calcu-
lations are much easier if one uses Z1(!) = 1/!3, which is the leading
term of the exact Z1(!) given by (4). This corresponds to a contin-
uous single-particle density of states that grows quadratically
with energy. Note from (11) that in this approximation, the statis-
tical virial coefficients are temperature independent, given by
bk

0 " 1/k4. The Fisher zeros are very sensitive to the analytical
properties of the partition function, so it is interesting to see how
different the pattern of zeros with this approximation is. In Fig. 3,
we show the pattern of complex zeros of the corresponding ZN(!)
for N = 50 and N = 100. Comparison with Fig. 1 shows considerable

Fig. 1. The Fisher zeros for systems of (a) 50 or (b) 100 ideal trapped
bosons taking into account the exact discrete energy spectrum.
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Models of trapped ideal bosons

[W. van Dijk, C. Lobo, A. MacDonald
& R.K. Bhaduri, Can. J. Phys. 93
(2015), 830–835]
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Introduction: Fisher zeros

Z = !
E2=0

N2 " !
E1=0

N1

!# E1,E2$ %e2"J2E2. # 10$

For example, Table I shows the summation of the density of
states over E1, !̃# E2$ =!E1

!# E1 ,E2$ , on 4# 8 square lattice.
Then the partition function Z is equivalent to the square of
the partition function Z0 of the nearest-neighbor-interaction
Ising model as follows:

Z = !
E2=0

N2

!̃# E2$ e2"J2E2 = Z0
2 = " !

E0=0

N2/2

!0# E0$ e2"J2E0%2

.

# 11$

Also, Table II shows the density of states !0# E0$ of the 4
# 8 square-lattice Ising model for J1=0 on a sublattice,
which readily reproduces !̃# E2$ in Table I. Therefore, the
partition function zeros in the complex b=e2"J2 plane lie on
the well-known two circles b1=1+&2ei$ and b2=−1+&2ei$

in the thermodynamic limit.
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FIG. 2. #Color online$ Partition function zeros in the complex a=e2"J1 plane of the 10# 20 square-lattice Ising model for #a$ R=1, #b$
2, #c$ 3, #d$ 4, #e$ 5, and # f$ 10. In #a$ , the loci # two circles$ of the zeros for R=0 in the thermodynamic limit are shown for comparison. The
total number of zeros is 560 for R=1, 920 for R=2, 1280 for R=3, 1640 for R=4, 2000 for R=5, and 3800 for R=10, respectively.

PARTITION FUNCTION ZEROS OF THE SQUARE-… PHYSICAL REVIEW E 81, 031120 #2010$

031120-3

The Ising model (with
nearest-neighbour and
next-nearest-neighbour interactions)

[S.-Y. Kim, Phys. Rev. E 81 (2010),
031120]
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Introduction: Fisher zeros

The Fisher zeros can give information about the critical behaviour of the model.

For example, because Zn(β) is polynomial with non-negative coefficients, there are no zeros on
the real axis. But as n gets large, the zeros closest to the real axis approach the critical point βc .

Moreover, if we sort the zeros according to their (positive) argument, then the k-th zero βn,k is
expected to behave as

βn,k ∼ βc + ckn
−φ + o(n−φ)

where φ is the crossover exponent and ck ∈ C is a constant.

These have been used in the past to estimate βc and φ, among other things.
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Introduction: Adsorbing walks

Linear polymers in a good solvent, terminally attached to an impenetrable surface, can undergo
an adsorption phase transition at a critical temperature.

These can be studied using various lattice and off-lattice models. In particular, self-avoiding walks
on a half-space of the square or cubic lattices:

In this case, E(ω) is the number of vertices in the surface (except the initial one), and the
partition function can be written as

Zn(a) =
∑
|ω|=n

aE(ω) where a = e−β
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Introduction: Adsorbing walks

The free energy is

κ(a) := lim
n→∞

1

n
log Zn(a).

This exists for all a ≥ 0, is continuous and almost-everywhere differentiable, and has a point of
non-analyticity at a critical point ac . This is estimated to be

ac ≈ 1.775615 (2D) [Guttmann, Jensen & Whittington 2014]

ac ≈ 1.306 (3D) [Janse van Rensburg 2016]

The behaviour near ac is (expected to be) governed by the crossover exponent φ:

κ(a)− κ(ac ) ∼ (a− ac )
1
φ , a→ a+

c

In 2D φ is predicted to be exactly 1
2

; it has been proposed that φ may be 1
2

in all dimensions, but
(some) numerical evidence in 3D disputes this...
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Fisher zeros for adsorbing SAWs

Janse van Rensburg [2017] used Monte Carlo methods (namely flatGAS) to estimate cn(v), the
number of SAWs of length n with v visits to the surface, on the square and cubic lattices. This
then gave estimates of the partition functions Zn(a). The locations of the zeros in the complex
a-plane were then computed. In the square lattice:

It was found that

a positive density of zeros appear to accumulate on a
circle of radius ac centred at 0

there are other zeros which appear to “drift” away
from the origin

all zeros lie in a vertical strip of slowly increasing
width

the zeros are “pinching” the positive real axis at a
point close to the critical point ac

[Janse van Rensburg, J. Stat Mech. (2017) 033208]
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Fisher zeros for adsorbing SAWs

An examination of the leading zero as n gets large produced mixed results:

While the approach to the real axis
does match a crossover exponent
φ = 1

2
, fitting to a quadratic gives the

estimate ac ≈ 1.8049, a fair way off
the current best estimate
ac = 1.775615.

[Janse van Rensburg, J. Stat Mech.
(2017) 033208]

Similar results were found for the cubic lattice.
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Fisher zeros for adsorbing directed walks

We then decided to take a completely different approach: what happens for a solvable model?
Can we “go backwards” and prove things about the zeros?

eg. For the 2D Ising model (with only nearest-neighbour interactions), the zeros all accumulate
on two circles of radius

√
2 centered on ±1 [Fisher 1965] (see earlier figure).

The simplest model of polymer adsorption uses interacting Dyck paths:

The partition functions Dn(a) of 2n-step paths satisfy a two-term recurrence

2a2(2n + 1)Dn(a)− [2(a− 1)(2n + 1) + a2(n + 2)]Dn+1(a) + (a− 1)(n + 2)Dn+2(a) = 0

with solution

Dn(a) =
n∑
`=0

2`+ 1

n + `+ 1

( 2n

n + `

)
(a− 1)`.

and generating function

D(z; a) =
∞∑
n=0

Dn(a)zn =
2

2− a(1−
√

1− 4z)
.
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Fisher zeros for adsorbing directed walks

With an exact solution to Dn(a), the zeros can be computed exactly for large n.

They behave quite differently to adsorbing SAWs:

-4 -2 2

-4

-2

2

4

n = 25

n = 50

n = 100

n = 150

n = 200

n = 300

This curve looks a bit like a cardioid...
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The limiting curve

... but in fact it is not a cardioid – it is the outer lobe of a limaçon:

This curve is the locus of points satisfying∣∣∣∣ a2

a− 1

∣∣∣∣ = 4

and is parametrised by a = x + iy with

x = 2 +
(

2
√

2− 4 cosφ
)

cosφ

y =
(

2
√

2− 4 cosφ
)

sinφ

for φ ∈ [0, 2π).

Why? The generating function has two singularities in the complex z-plane, depending on the
value of a. They lead to the asymptotic growth rate

lim
n→∞

Dn(a)
1
n = µ(a) =

4, if
∣∣∣ a2

a−1

∣∣∣ ≤ 4 or |a− 1| < 1;

a2

a−1
, if

∣∣∣ a2

a−1

∣∣∣ > 4 and |a− 1| ≥ 1.

The outer lobe is exactly the boundary between the two different growth regimes of Dn(a).
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The limiting curve

If |a− 1| ≥ 1 then the two singularities contribute to the asymptotics of Dn(a). Roughly,

Dn(a) ∼ C1

(
a2

a− 1

)n

+ C2n
− 3

2 4n(1 + O(n−1))

for constants C1,C2.

If Dn(a∗n ) = 0 then these two terms must cancel. As n→∞ the two exponential terms must

balance, so

∣∣∣∣ (a∗n )2

a∗n−1

∣∣∣∣→ 4.

With more work, can show that the zeros become dense on the limaçon, ie. for any point p 6= 2
on the limaçon and ε > 0, there is an N such that Dn(a) has a zero inside the ball |p − a| ≤ ε for
all n ≥ N.
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The critical point

Dyck paths undergo an adsorption transition at a = ac = 2.

The limaçon meets the real axis here at an angle of 45◦. Dn(a) has no positive real zeros, but the
zeros “pinch” the real axis at a = 2.

However the first (or k-th) zero does not approach a = 2 along the limaçon:

-1.0 -0.5 0.0 0.5 1.0 2.0 2.5

0.5

1.0

1.5

2.0

2.5

So how does it behave?
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The leading zero

The crossover exponent for Dyck paths is φ = 1
2

, so take Dn(2 + c√
n

):

Dn(2 + c√
n

) =
n∑

k=0

n∑
`=k

2`+ 1

n + `+ 1

( 2n

n + `

)(`
k

) ck

nk/2

Using Stirling’s approximation etc. this can be (carefully) approximated with an integral, which
can be evaluated. The result is

Dn(2 + c√
n

) ∼
4n

2
√
πn

(
2 + c

√
π e

c2

4 (1 + erf( c
2

))

)
. (?)

The leading zero then behaves like 2 + c0√
n

, where c0 ∈ C is the root of (?) closest to 0.

Approximately
c0 = 2.450314191845586...+ 5.094256056412729...× i

Further terms in the approximation can be obtained by setting a = 2 + c0√
n

+ c1
n

etc.
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SAWs vs. Dyck paths

Why the big difference between SAWs and Dyck paths?

The Dyck path generating function has only two singularities, and the zeros are drawn to the
region in C where the exponential contributions of these two singularities balance, ie. the limaçon.

More generally, for a g.f. with s <∞ singularities, the complex a-plane (≈ complex T plane) can
be partitioned into regions determined by which singularity is dominant. The zeros are then
drawn to the boundaries of these regions.

But the g.f. for SAWs is believed to have infinitely many singularities, or even uncountably many.
So the partition function zeros may not be drawn to well-defined curves.

Nicholas Beaton (Melbourne) Partition function zeros February 1, 2018 15 / 17



Other models

There are lots of other solvable models, e.g. pulled ballot paths,

adsorbing and/or self-interacting partially directed walks, staircase polygons, prudent walks, etc
etc. What other pictures can emerge?
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