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Abstract

We consider the enumeration of self-avoiding walks and polygons on regular lattices. Such ob-

jects are connected with many other problems in combinatorics, as well as in fields as diverse as

physics and chemistry. We examine the general models of walks and polygons and methods we

can use to study them; subclasses whose properties enable a rather deeper analysis; and exten-

sions of these models which allow us to model physical phenomena like polymer collapse and

adsorption.

While the general models of self-avoiding walks and polygons are certainly not considered

to be ‘solved’, recently a great deal of progress has been made in developing new methods for

studying these objects and proving rigorous results about their enumerative properties, partic-

ularly on the honeycomb lattice. We consider these recent results and show that in some cases

they can be extended or generalised so as to enable further proofs, conjectures and estimates.

In particular, we find that properties shared by all two-dimensional lattices allow us to develop

new methods for estimating the growth constants and certain amplitudes for the square and

triangular lattices.

The subclasses of self-avoiding walks and polygons that we consider are typically defined

by imposing restrictions on the way in which a walk or polygon can be constructed. Ideally

the restrictions should be as weak as possible, so as to result in a model that closely resembles

the unrestricted case, while still enabling some manner of simple recursive construction. These

recursions can sometimes lead to solutions for generating functions or other quantities of in-

terest. Some of the models we consider display quite unusual asymptotic properties despite the

relatively simple restrictions which lead to their construction.

We approach the modelling of polymer adsorption in several ways. Firstly, we adapt some

of the new methods for studying self-avoiding walks on the honeycomb lattice to account for

interactions with an impenetrable surface. In this way we are able to prove the exact value of the

critical surface fugacity for adsorbing walks, confirming an existing conjecture. Then, we show

that some key identities for the honeycomb lattice model lead to a new method for estimating

the critical surface fugacities for adsorption models on the square and triangular lattices. Many of

the estimates we obtain in this way are new; for the cases where previous estimates did already

exist, our results are several orders of magnitude more precise. Finally, we define some new

solvable models of polymer adsorption which generalise existing models, and find that some of

these models exhibit interesting and unexpected critical behaviour.
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Preface

Much of the content of Section 2.2 was worked on in collaboration with Anthony Guttmann

and Iwan Jensen, and has been published in [12]. The ideas arose from conversations with

Guttmann. Jensen computed the series data and Guttmann and I calculated estimates and ex-

trapolations.

The work on 3-sided prudent polygons (i.e. most of Subsections 3.2.3 and 3.2.4) was in col-

laboration with Philippe Flajolet and Anthony Guttmann, and has been published in [10, 11].

Flajolet contributed many of the ideas of the proof, such as performing a Mellin transform analy-

sis, as well as providing a number of technical details and references to useful results. I calculated

the original generating functions and computed series data, and was responsible for many of the

technical details and calculations. Guttmann contributed series analysis and provided a number

of useful references.

Some of the results of Section 3.3 appear in [9], which is primarily a review article. Those

which appear here are entirely my own, except for some numerical results which are appropri-

ately attributed in the text.

Subsections 4.1.1–4.1.3 are joint work with Mireille Bousquet-Mélou, Jan de Gier and An-

thony Guttmann, and most of the results therein can be found in [8]. The original idea was

Guttmann’s, and he provided direction and useful references throughout. De Gier contributed

to the ideas of Subsection 4.1.1 as well as the idea of Proposition 4.9. Bousquet-Mélou provided

useful comments and many of the technical details in Subsections 4.1.2 and 4.1.3. The formula-

tion of the results of Subsections 4.1.1 and 4.1.3 is primarily my own work, as was computation

of a number of generating functions which assisted with our initial investigations.

An article presenting the results of Subsection 4.1.4 is currently in preparation.

Section 4.2 is joint work with Anthony Guttmann and Iwan Jensen, and the results have

been published in [13]. The original idea arose from conversations with Guttmann. Jensen

computed series data while Guttmann and I calculated series estimates and extrapolations.

The ideas and motivation behind Subsections 4.3.2 and 4.3.3 arose in conversation with

Gary Iliev. The results presented here are my own. An article containing some of these results

is currently being prepared by Iliev and myself.

Appendix A is mostly due to Hugo Duminil-Copin, with some contributions by Mireille

Bousquet-Mélou. It is included here because of its importance in relation to the result of Subsec-
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tion 4.1.3. It is largely a reproduction of material presented in [8].

Subsection B.1.2 is almost entirely due to Iwan Jensen, and is included here for completeness.

It is largely a reproduction of material appearing in [12, 13].
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Chapter 1

Introduction

Combinatorics is an area of mathematics where remarkably simple problems often have surpris-

ingly complicated solutions.1 The problem of enumerating self-avoiding walks is one such; it is

very easily stated, but seems extremely difficult to solve exactly.

Formally, a self-avoiding walk (SAW) ω on a graph G = (V , E) is a sequence of vertices

(ω0,ω1, . . . ,ωn) ⊆ V such that {ωi ,ωi+1} ∈ E and ωi 6= ω j for i 6= j . If ω contains n + 1

vertices we say it has length |ω| = n. The graph G is usually taken to be an infinite periodic

graph with a high degree of symmetry, i.e. a lattice. For example, if we embed the square lattice

in the Cartesian plane with a vertex at each point with integer coordinates, then

ω = ((0,0), (0,1), (1,1), (2,1), (2,2))

is a self-avoiding walk of length 4. (See Figure 1.1 for an example of a SAW on the square lattice.)

As suggested above, the central question considered by those who study SAWs is very simple:

For a given graph G, what is the number cn of self-avoiding walks of length n on the vertices of G?

Clearly this question makes no sense for infinite graphs2 – for example, our little SAW ω

could be translated by any integer distance in the x or y directions and we would get another

SAW of length 4. So perhaps a more sensible question might be:

For a given graph G, what is the number cn of distinct self-avoiding walks (up to automorphisms

of G) of length n on the vertices of G?

Now this has eliminated the possibility of translations, reflections and rotations on infinite lat-

tices, and in our example c4 will be a meaningful finite number.

1Perhaps the most famous such problem is that of the four-colour theorem, which states that the vertices of any

planar graph can be properly coloured with at most four colours. The statement of the theorem can be very easily

explained, but after being formally conjectured in 1852 it took 124 years for a correct proof to be produced, and even

then the proof required hundreds of pages and extensive use of computer software.
2Excluding pathological graphs like the one without any edges, anyway.
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In fact, when working on regular lattices, it is standard practice to allow reflections and

rotations and forbid only translations. Since it is this type of graph that is the focus of this

thesis, we finally phrase the question as it is addressed here:

For a given regular lattice L, what is the number cn of distinct self-avoiding walks (up to

translation) on the vertices of L?

Defining walks up to translation is of course equivalent to fixing the starting vertex, and so this

point is usually taken to be the origin.

The difficulty of this problem becomes evident as soon as one attempts to find the first

few terms of the sequence {cn}. Consider for example the square lattice. The empty walk,

containing only the origin, is defined to be a walk of length 0, so we have c0 = 1. Then clearly

c1 = 4, c2 = 12, c3 = 36. The prevailing pattern suggests that the next term ought to be 108,

but actually c4 = 100, because certain walks of length 3 (e.g. ((0,0), (0,1), (1,1), (1,0))) cannot be

extended in every direction.

In essence this is why determing the sequence {cn} is so difficult – whether we are able to

append a step to the end of a walk ω of length n − 1, to form a walk of length n, depends on

the entire structure of ω.3 So the number cn depends not just on the value of cn−1, or even

the entire sequence {c0, c1, . . . , cn−1}, but instead on the actual structures of each of the walks

counted by cn−1. This means there is no way to exploit a recursive relation on the cn in order to

find an exact solution.

This all may seem rather pessimistic; it appears that we’ve already proclaimed our main

question unanswerable! Nothing, however, could be further from the truth. While there are no

regular lattices in two or more dimensions for which we have an exact expression for cn , there

are still a number of results which have been proven about the behaviour of cn , and many more

conjectures. There are also enumerative techniques far more advanced than simply attempting

to generate walks of length n by attaching steps to walks of length n− 1, and remarkably long

sequences are known for some lattices.

Going beyond the simple enumeration of SAWs of length n, there are many other questions

we can ask about their behaviour:

• As n grows large, what “size” or “shape” do SAWs of length n tend to assume? For example,

how far is the endpoint likely to be from the origin?

• How likely is it that a walk will become “trapped” and be unable to step any further?

• How do the answers to these questions vary if we consider different lattices? Or higher dimen-

sions?

• How do SAWs relate to other combinatorial objects? What about models in other areas, like

physics and chemistry?

3Self-avoiding walks are thus sometimes called non-Markovian.
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Figure 1.1: A self-avoiding walk of length 34 and an unrooted self-avoiding polygon of perimeter

44 and area 25 on the square lattice.

The goal of this thesis is to address some of these and other questions. We will do so using a

number of different methods, and obtain results both rigorous, numerical and conjectural. Still,

we are only scratching at the surface of all there is to know about self-avoiding walks.

Before moving onto a discussion of background and currently-known results, it seems pru-

dent to explain the second part of the title of this thesis; that is, polygons. A rooted self-avoiding

polygon (SAP) of perimeter n ≥ 4 is a self-avoiding walk of length n − 1 whose endpoint is ad-

jacent to its starting point. That is, a SAW ω = (ω0,ω1, . . . ,ωn−1) is a SAP if ω0 and ωn−1 are

connected by an edge of the lattice. One usually imagines inserting the final edge to connect the

first and last points, forming a closed loop (i.e. a polygon in the traditional sense of the word).

An unrooted self-avoiding polygon of perimeter n is a sequence of distinct lattice points

(ω0,ω1, . . . ,ωn−1)

withωi adjacent toωi+1 (andω0 adjacent toωn−1), defined up to cyclic permutations or order

reversal of the ωi (and translations, of course). Intuitively, an unrooted polygon is just a closed

loop on the lattice with no vertex occurring more than once. (See Figure 1.1 for an example of

an unrooted SAP on the square lattice.)

If pn is defined as the number of rooted polygons of perimeter n and un the number of

unrooted polygons of perimeter n, then it is easy to see that

pn = 2nun . (1.1)

(An unrooted polygon can be identified with a rooted one by selecting a vertex as the starting

point and deleting one of the occupied edges adjacent to it. There are 2n ways to do this.)
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Many of the questions mentioned above regarding SAWs also apply to SAPs – not only are

we interested in their enumeration, but also their shape, size, and relationships with other ob-

jects and models. As will be discussed at length in Chapter 3, polygons can also be enumerated

by area, rather than perimeter, and there are a number of differences in the methods used be-

tween the two approaches.

Self-avoiding walks are generally considered to have been introduced by Orr in the middle

of the last century [93].4 Orr, a polymer chemist, was interested in finding a mathematical

model for long polymer molecules in solution which incorporated the excluded volume effect

– the property that no pair of monomers (the individual units) of a molecule can occupy the

same point in space. Prior to this, polymer models usually used random walks and completely

disregarded the excluded volume effect. Other early related work, also in the field of polymer

chemistry, was done by Flory [45].

Flory and Orr were not particularly interested in enumerating SAWs – they were concerned

with the conformational properties of polymers, such as the average distance between endpoints

and the density of monomers in solution. The earliest work to take into account the behaviour

of cn was by Hammersley and his collaborators [20, 60]. Hammersley noted that a SAW could

be split at any vertex along its length into two shorter SAWs,5 giving the very important rela-

tionship

cm+n ≤ cm cn , m, n ≥ 0. (1.2)

(Such an inequality implies that the sequence {cn} is submultiplicative.) If we take the logarithm

of both sides of (1.2), we obtain

log cm+n ≤ log cm + log cn ,

and so the sequence {log cn} is subadditive. Taking into account the finiteness of cn , we are then

able to apply Fekete’s Lemma to obtain:

Lemma 1.1 (Hammersley). The limit

lim
n→∞

1

n
log cn = κ (1.3)

exists and is equal to

κ= inf
n≥1

1

n
log cn . (1.4)

4Though such a simple combinatorial object was likely considered by somebody well before then.
5Technically, if we define SAWs as having to start at the origin, then the second component is a SAW which has

been translated so that its starting point coincides with the first component’s endpoint.
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The finiteness of cn and (1.4) guarantee that κ <∞, but for general subadditive sequences it

is possible that this limit could equal−∞. Here however this cannot occur, since for example we

clearly have cn ≥ 3 for all n on any regular lattice in two or more dimensions. Thus κ ∈ [0,∞).

Corollary 1.2.

cn = exp(κn+ o(n)). (1.5)

Here, o( f (n)) denotes any function g (n) satisfying limn→∞ g (n)/ f (n) = 0, and f (n)∼ g (n)

if limn→∞ f (n)/g (n) = 1. Thus, (1.5) can be written in the alternative form

cn =C (n)µn (1.6)

where C (n) = e(o(n) and µ= eκ.

The constants κ and µ are known as the connective constant and growth constant respec-

tively, and depend on the lattice under consideration.6 Very little is known rigorously about the

subexponential term C (n), though there are many conjectures. In fact, it is generally believed

that the asymptotic form of cn is given by

cn ∼Anγ−1µn (1.7)

with A and γ constant and known as the amplitude and critical exponent respectively. This

form for cn is supported by both numerical evidence [73] and by arguments from statistical

physics [89]. In fact Nienhuis [89] was able to provide a conjecture for the exact value of γ in

two dimensions, namely γ = 43/32. He also made a compelling argument that on the honey-

comb lattice, the growth constant µ should be exactly
Æ

2+
p

2. A rigorous proof of this fact

went undiscovered for some 28 years, until it was finally announced in 2010 by Duminil-Copin

and Smirnov [34]. (Their proof is of crucial importance to a number of results in this thesis,

and is explored in detail in Chapter 2.)

In two, three and four dimensions the asymptotic form (1.7) is only conjectural, but in

higher dimensions it has been proven [65, 64] that

cn ∼Aµn ,

i.e. that γ = 1. It is expected that if (1.7) is correct in all dimensions then γ depends only on

the dimension and not the specific structure of the lattice. (This property is known in statistical

physics as universality.) In three dimensions there is no conjecture for the exact value of γ , but

numerical evidence and simulations [84] suggest γ ≈ 1.162. Similarly, in four dimensions it is

believed that γ = 1 with logarithmic corrections, so that cn ∼ Aµn(log n)1/4, but this has not

been proven [85].

6Various articles in the literature instead refer to µ as the connective constant.
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As regards the growth constant (which, unlike the critical exponent γ , has at least been

proven to exist for all regular lattices), the only regular lattice7 in two or more dimensions for

which the exact value is known is the aforementioned honeycomb lattice, where it is equal to
Æ

2+
p

2. For the other two-dimensional lattices, the best estimates for µ are [73, 75]

µsquare ≈ 2.63815853031(3)

and

µtriangular ≈ 4.150797226(26),

based on analysis of the known values of the {cn} and {un} sequences on those lattices.8

We mention here that, while expressions like (1.6) suggest that µ = limn→∞ cn+1/cn , this

result has not been proven in two, three or four dimensions9 (though numerical evidence does

support this conjecture). Kesten proved [78] that

lim
n→∞

cn+2

cn
=µ2, (1.8)

and O’Brien [90] has proven that cn+1 > cn for all n ≥ 0.

The statement above, that current estimates of µ are based on known values of cn and un ,

raises the question as to the relevance of the values of un , i.e. the number of self-avoiding poly-

gons of perimeter n, to the value of the growth constant µ for self-avoiding walks. In fact the

asymptotic behaviours of cn and un are intimately connected.

Lemma 1.3 (Hammersley [61]). For a given regular lattice, the limit

lim
n→∞

1

n
log un (1.9)

exists and is equal to κ, the connective constant of self-avoiding walks on the lattice.

The proof (omitted for brevity) involves showing that any two polygons of perimeters m

and n can be concatenated to form a unique polygon of perimeter m + n, and then bounding

the number of polygons in terms of the number of walks.

7The exact value is known for some non-regular lattices, like the (3.122) lattice [54]. (Lattices like these are often

called quasi-regular.)
8The value for the square lattice is indistinguishable from the smallest positive root of 581x4+ 7x2− 13, but thus

far no one has produced an independent argument in support of this value.
9Kesten [78] does remark that this can be shown for the triangular lattice in two dimensions, and the same idea

could be used for the face-centred cubic latticein three dimensions.
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Just as with SAWs, this result implies that

un =U (n)µn (1.10)

with U (n) = exp(o(n)). Also like the SAW case, it is generally believed that the asymptotic form

of un is given by

un ∼ Bnα−3µn (1.11)

with B and α constant. The critical exponent α is, like γ , expected to depend only on the

dimension of the lattice in question. In two dimensions there is strong evidence [89] that α =

1/2, while in three dimensions numerical studies suggest [53] α≈ 0.23721. In dimension four it

is expected [53] that α= 0 with a logarithmic correction term, while in five or more dimensions

it is known that α= 0.

As mentioned earlier, it is possible to enumerate SAPs in two dimensions by area, rather

than perimeter.10 If an denotes the number of SAPs with area n, then simple concatenation

arguments like the one Hammersley uses for perimeter enumeration suffice to show

lim
n→∞

1

n
logan = logφ (1.12)

exists and is equal to

logφ= sup
n≥1

1

n
logan .

Hence

an =A(n)φn (1.13)

with A(n) = exp(o(n)). As with cn and un , it is generally believed that

an ∼Dnτφn (1.14)

for constants D and τ. The exponent τ is thought to be −1, and current estimates [53] for φ

are

φsquare ≈ 3.970944(2)

φtriangular ≈ 2.9446596(3)

φhoneycomb ≈ 5.16193016(3).

Asymptotic formulas like (1.6) and (1.10) are rigorous but rather vague, owing to the fact

that we only know that C (n) and U (n) are subexponential. There also exist rigorous bounds on

quantities like cn which, though ultimately quite weak, are at least precise.

10In higher dimensions there exist quantities which resemble “area”, but their definition is quite complicated.

7



Lemma 1.4 (Hammersley and Welsh [63]). On a hypercubic lattice in d ≥ 2 dimensions, for any

constant C >π
p

2/3, there exists an N0(C ) independent of d such that

cn ≤ eC
p

nµn+1 for all n ≥N0. (1.15)

The proof of this important result involves a number of technical details, but the basic struc-

ture is:

• Any SAW can be split at its bottom vertex11 into two SAWs which begin at their bottom

vertices.12

• A SAW which begins at its bottom vertex can be decomposed into a sequence of self-

avoiding bridges – walks whose starting point has minimal x-coordinate and end point has

(strictly) maximal x-coordinate.13 The number bn of bridges of length n has the same

growth rate as SAWs; that is,

lim
n→∞

1

n
log bn = logµ. (1.16)

• The number of ways of concatenating a sequence of bridges to form a SAW of length n

which starts at its bottom vertex is bounded above by the number PD (n) of strict parti-

tions14 of n. Hardy and Ramanujan [66] showed that

PD (n)∼ exp

�

π

r

n

3

�

. (1.17)

• The above can then be combined to give the lemma.

Since we clearly have that pn ≤ cn , the bound of (1.15) applies equally well to pn , and we

can then use (1.1) to obtain a bound on un .

The following bound, due to Kesten (appearing in [85, Sec. 3.3]), is slightly stronger than

that of Lemma 1.4 in three and four dimensions.

Lemma 1.5 (Kesten). On a hypercubic lattice in d ≥ 2 dimensions there exists a constant Q,

depending on d , which satisfies

cn ≤µ
n exp(Qn2/(d+2) log n) for n ≥ 2. (1.18)

11If a walk ω = (ω0, . . . ,ωn) in d dimensions has vertices ωi = (ωi (1), . . . ,ωi (d )), then the bottom vertex is the

pointωB ∈ω satisfying

(i) ωB (1)≤ω j (1) for all 0≤ j ≤ n, and

(ii) for 2≤ m ≤ d and j 6= B ,ω j (m)≤ωB (m)⇒∃m′ < m such thatωB (m
′)<ω j (m

′).

12The direction of one of the pieces will have to be reversed, of course.
13Technically the sequence alternates between bridges and reflected bridges.
14That is, the number of ways one can write n =

∑

i λi with λi ∈Z and 0< λ1 < λ2 < . . ..
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An important concept used extensively in this thesis is the generating function of a sequence.

The (ordinary) generating function of SAWs on a given lattice is

Z(x) =
∞
∑

n=0
cn xn =

∑

ω

x |ω| (1.19)

where the last sum is over all SAWsω. We will often refer to the sequence {cn} as the coefficients

of Z(x). In a statistical physics context the variable x is known as an activity or fugacity and

is normally taken to be real and non-negative.15 When considering generating functions in

combinatorics it is common to allow the variable x to be complex. We likewise define generating

functions for the sequences pn , un ,an and so on.

The radius of convergence of Z(x) is given by

lim
n→∞

c−1/n
n

which is equal to µ−1 by Lemma 1.1. It also follows from (1.4) that

cn ≥µ
n , (1.20)

and hence

Z(µ−1) =∞. (1.21)

(Of course, inequalities like (1.20) are not true for all sequences (polygons being one example),

and so there are also cases where the generating functions are finite at µ−1.)

The idea that generating functions can be used to determine growth constants is profoundly

useful – for example, this is precisely how Duminil-Copin and Smirnov [34] prove that µ =
Æ

2+
p

2 on the honeycomb lattice. Likewise, in Chapters 3 and 4 we calculate a number of

generating functions without directly determining the underlying sequences, and use these to

determine the growth rates.

In fact, we can obtain a lot more information from the generating function than just the

value of the connective constant or growth rate. The central tenet of analytic combinatorics [44]

is that, if a generating function

F (x) =
∑

n
fn xn

has radius of convergence ρ, then a complete asymptotic expansion of the coefficients fn can

be obtained by studying the behaviour of F (x) at its dominant singularities – the singularities

on the circle |x| = ρ. In particular, the contribution of a single isolated singularity is given in

15In statistical physics the function Z(x) is sometimes known as the susceptibility, but we won’t use this term.
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Lemma 1.6 below [44, Thms. VI.1 & VI.4]. We first need a definition [44, Definition VI.1]:

given two numbers φ, R with R> 1 and 0<φ<π/2, the open domain∆(φ, R) is

∆(φ, R) = {z
�

� |z |< R, z 6= 1, |arg(z − 1)|>φ}.

A domain is a∆-domain if it is a∆(φ, R) for some R and φ.

Lemma 1.6 (Flajolet and Sedgewick). If

F (x) =
∞
∑

n=0
fn xn

has a single dominant singularity at x = x0 6= 0 and can be continued to a domain of the form x0 ·∆0

for some∆-domain∆0, where x0 ·∆0 is the image of∆0 by the map z 7→ x0z, and

F (x) ∼
x→x0

1

(1− x/x0)
α , α ∈C\Z≤0,

then

fn ∼
nα−1x−n

0

Γ(α)

�

1+
α(α− 1)

2n
+
α(α− 1)(α− 2)(3α− 1)

24n2
+O(n−4)

�

. (1.22)

In addition, [44, Thm. VI.2] extends this result to the cases when the behaviour of F (x)

around x0 has a logarithmic term.

So for example, if the generating function Z(x) displayed the behaviour

Z(x) ∼
x→µ−1

A′

(1− xµ)43/32
(1.23)

then this could lead to

cn ∼An11/32µn ,

just as conjectured (1.7) (with A = A′/Γ(43/32)). In fact, while Pringsheim’s Theorem [44,

Thm. IV.6] guarantees that Z(x) must have a singularity at x = µ−1, it is believed [51, 58] that

Z(x) has a second singularity at x = −µ−1. In this case, as explained in [44, Thm. VI.5], the

asymptotic form of cn can be found by using the result of Lemma 1.6 to calculate the contribu-

tion of each singularity and then adding the contributions.

In Chapters 3 and 4 we will consider multivariate generating functions; that is, generating

functions whose underlying sequences have more than one index. We do this for two reasons:

firstly, because for some of the sequences fn that we wish to compute (or at least, compute their

generating functions), the only way to utilise a recursion on the coefficients is by introducing

additional measurements. For example, to recursively generate walks which remain in a half-

space, we might have to keep track of not only the length but also the distance between the

endpoint of the walks and the boundary of the half-space.

Secondly, in Chapter 4 we will consider SAWs as a model of long chain polymers, and in

these models it is often desirable to measure quantities besides the length of polymers. For

10



example, we consider polymers which interact with an impenetrable surface, and model this by

studying walks in a half-space where we keep track of the number of times each walk visits the

boundary of the half-space. By associating a fugacity with this count (i.e. by constructing the

bivariate generating function) we can study walks which visit the surface a relatively large or

small number of times.

Methods for relating the singularities of multivariate generating functions to their coeffi-

cients are covered in [44, Ch. IX], though for most of the problems considered in this thesis we

are able to reduce the generating functions to univariate functions before attempting a singular-

ity analysis.

As was mentioned at the start of this chapter, the enumeration of SAWs and SAPs is not

the only problem considered by researchers in this field. Of equal importance to the number of

SAWs or SAPs of a given length or perimeter is the size of these objects, and in particular the

average size. For a SAW ω = (ω0,ω1, . . . ,ωn), there are three commonly-used metrics used to

describe “size”:

• The squared end-to-end distance is

R2
e (ω) = |ωn |

2. (1.24)

• The squared radius of gyration is

R2
g (ω) =

1

2(n+ 1)2

n
∑

i , j=0

|ωi −ω j |
2. (1.25)

• The squared distance of vertices from the endpoints is

R2
m(ω) =

1

2(n+ 1)

n
∑

i=0

|ωi |
2+ |ωi −ωn |

2. (1.26)

Here, |ωi | is the usual Euclidean distance.

For unrooted SAPs, only one of the above three is defined:

• The squared radius of gyration of a SAPω = (ω0,ω1, . . . ,ωn−1) is

R2
p (ω) =

1

2n2

n
∑

i , j=0

|ωi −ω j |
2. (1.27)
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With these quantities defined we are now most interested in their mean values with respect

to the uniform measure;16 for example, the mean squared end-to-end distance of SAWs of length

n is

〈R2
e〉n =

1

cn

∑

ω

R2
e (ω), (1.28)

where the sum is over all SAWs of length n. We similarly define 〈R2
g 〉n , 〈R2

m〉n and 〈R2
p〉n .

While very little has been proven about these quantities, it is widely believed that

〈R2
e〉n ∼ En2ν (1.29)

for constants E and ν, and likewise for 〈R2
g 〉n , 〈R2

m〉n and 〈R2
p〉n , where the amplitude E varies

between the four quantities but the exponent ν is the same. In fact, like γ and α, the exponent

ν (if it exists) is expected to be the same for all lattices of a given dimension. In two dimensions

there is substantial evidence [89, 83] to suggest that ν = 3/4. In three dimensions it is estimated

[84] that ν ≈ 0.5876, while in four dimensions it is believed [53] that ν = 1/2 with logarithmic

corrections, that is, 〈R2
e〉n ∼ En(log n)1/4. In five or more dimensions it has been proven [65, 64]

that ν = 1/2.

As has been alluded to throughout this chapter, SAWs and SAPs on regular lattices have a

strong connection to models in mathematical physics, and in particular statistical mechanics.

While (as the title suggests) we are mostly interested in the combinatorics of SAWs and SAPs,

such as their enumerative properties and generating functions, parts of this thesis (particularly

Chapter 4) are motivated by the applications of SAWs to physics. Thus we dedicate part of this

chapter to defining some key concepts in statistical mechanics and their connection with SAWs

and SAPs.

Broadly speaking, statistical mechanics is the study of systems comprised of many individual

components, and addresses how local interactions between components can produce large scale,

global effects. A classical example is the model of ferromagnetism – each individual molecule in

a bar of iron has a microscopic magnetic field, and in favourable conditions these magnetic fields

influence those of their neighbours and cause them to become aligned. The collective alignment

of a large fraction of the magnetic fields inside the bar produces a macroscopic field across the

whole bar.

The first model that relates SAWs and SAPs to statistical mechanics is the n-vector model,

introduced by Stanley in 1968 [107]. One considers a lattice of N sites (vertices), and to each site

16Of course there exist other probability measures on SAWs besides the uniform measure – one example is to

consider SAWs as kinetic growth walks [86].
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assigns an n-dimensional vector, called a spin, of magnitude
p

n. The Hamiltonian, or energy,

of a particular configuration of spins is

H =−
∑

<i , j>

si · s j −H
∑

i

si (1), (1.30)

where si is the spin at site i and si (1) is the first component of si . The first sum is taken over all

pairs of sites (i , j )which are adjacent on the lattice. The factor H represents an external magnetic

field, assumed (without loss of generality) to be in the same direction as the first component of

the si . The n = 1 case is known as the Ising model, and is the simplest model of ferromagnetism.

Other well-known models correspond to n = 2,3 and the limit n→∞.

The partition function of the system of size N is

ZN (T , H ) =
∑

all
configurations

exp(−H /kB T ) (1.31)

where kB is Boltzmann’s constant and T is the absolute temperature,17 and the free energy is then

κ(T , H ) = lim
N→∞

−1

N
kB T logZN (T , H ). (1.32)

(Taking the lattice size N →∞ is known as the thermodynamic limit.) Of relevance here is the

quantity known as the magnetic susceptibility,

χ (T ) =−
∂ 2κ

∂ H 2

�

�

�

�

�

H=0

. (1.33)

The susceptibility can be expanded as a power series, and the terms in the summation can

be interpreted as weights assigned to graphs on the underlying lattice [85, 68]. De Gennes [25]

observed that, in the (rather peculiar) limit n → 0, the only such graphs with non-zero weight

are non-intersecting paths from a site i to another site k. Thus the magnetic susceptibility of

the n-vector model, in the limit n→ 0, is exactly the generating function of self-avoiding walks.

This allows for some techniques from statistical mechanics, such as the renormalisation group

and conformal field theory, to be applied to SAWs and SAPs.

The second set of models in statistical physics which are related to SAWs and SAPs are mod-

els of polymers and vesicles. Generally speaking, a polymer is a large molecule comprised of

many repeated pieces (monomers). A vesicle is a bubble of fluid, typically found in biological

cells (but they can also be artificial), which can be involved in a number of different processes

within the cell. As was mentioned at the start of this chapter, SAWs were conceived by Flory and

Orr [45, 93] as a model of polymers which accounted for the excluded volume principle.18 Like-

wise, SAPs and related objects in higher dimensions (e.g. polycubes) are considered as models of

vesicles.
17For n ≥ 2 there are infinitely many possible values for the spin, and the sum (1.31) becomes an integral.
18Related objects like self-avoiding trails have also been used as models for polymers, but will not be discussed here.
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Two phenomena which are frequently modelled with SAWs are polymer adsorption and

collapse. In each of these cases, the system of size N is a SAW of length N (possibly in some kind

of restricted geometry, like a half-space). The partition function is then

ZN (α) =
∑

ω

eαc(ω) (1.34)

where the sum is over all SAWs ω of length N , and c(ω) is the number of interactions which

occur in ω. In the case of adsorption, an interaction takes place when the walk ω visits the

adsorbing surface; for example, c(ω) might count the number of edges in the surface which

are occupied by ω. In the case of collapse, interactions will occur between sufficiently close

(non-consecutive) monomers in ω; for example, a nearest-neighbour interaction occurs when

two vertices inω are adjacent on the lattice but not connected by an edge inω. The variable (or

fugacity) α is sometimes written as

α=
−ε

kB T
,

where ε is the energy associated with a single interaction, kB is Boltzmann’s constant and T is

absolute temperature.

Here, the free energy is given by

bκ(α) = lim
N→∞

1

N
logZN (α). (1.35)

It can be shown [62] that the free energy is continuous but has a point of non-analyticity at

α = αc. In adsorption models, one can compute the density of monomers in the surface (in the

limit of infinitely long polymers),

δ(α) =
∂ bκ(α)

∂ α
, (1.36)

and it follows that this density is 0 for α < αc and is > 0 for α > αc. That is, the critical point αc

delimits the desorbed and adsorbed phases of the polymers. (See the introduction to Chapter 4

for further discussion regarding this density function.)

The behaviour of the free energy at the critical point αc is thought to be characterised by a

crossover exponent φ, satisfying

bκ(α)− bκ(αc)∼ c(α−αc)
1/φ as α→ α+c (1.37)

for some constant c .

Similarly, in the case of collapse the polymers undergo a collapse transition at αc; for α < αc,

they tend to be stretched out and span a large region of space, while for α > αc the polymers are

tightly wound and occupy a small region of space. (More precisely, we can consider metrics like

the mean squared end-to-end distance or the squared radius of gyration, and observe that these

averages display different behaviours in the α < αc and α > αc regimes.)

In the case of vesicles, researchers are primarily interested in the interplay between surface

area and volume [120]. In two dimensions these reduce to perimeter and area, and so there are
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two types of partition functions, constant perimeter and constant area. If pm(n) is the number

of (unrooted) polygons with perimeter m and area n, then the partition functions are

Pm(q) =
∑

n
pm(n)q

n (1.38)

and

An(x) =
∑

m
pm(n)x

m . (1.39)

In the constant perimeter case, the critical point qc = 1 delimits the collapsed phase, when fluid

tends to flow out of the vesicle and the area shrinks, and the swollen phase, where fluid flows in

and the area increases. As with the polymer models, we can then compute the free energy for

either of these two cases. For example,

κP (q) = lim
m→∞

1

m
log Pm(q). (1.40)

From here, one can consider the behaviour of the free energy near the critical point qc = 1 or

the average area of perimeter m polygons as m → ∞. Likewise, similar computations can be

performed for the constant area case. See [4, 39] for further details.

We finally note that from partition functions like (1.34) and (1.38), we can define multivari-

ate generating functions (or in the language of statistical mechanics, grand canonical partition

functions) by associating a weight with the system size N and then summing over all N . For

example, in the case of adsorbing polymers, we obtain

Z(x,α) =
∞
∑

N=0

ZN (α)x
N . (1.41)

For fixed α, the radius of convergence ρ(α) of Z(x,α) is given by

ρ(α) = lim
n→∞

Zn(α)
−1/n = exp(−bκ(α)) (1.42)

where bκ(α) is the free energy as per (1.35). So if we can compute the generating function and

determine its dominant singularity as a function of α, then we get the free energy without having

to first calculate the individual partition functions ZN . In Chapter 4 we will make use of this

property when we consider some solvable models of polymer adsorption.

This thesis is comprised of three main parts. In Chapter 2 we consider general self-avoiding

walks on the three two-dimensional regular lattices. In particular, we focus on the recent
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proof by Duminil-Copin and Smirnov [34] that the growth constant of the honeycomb lat-

tice is
Æ

2+
p

2. Unfortunately, it seems that their methods cannot be adapted to produce

similar proofs for the other two-dimensional lattices. However, we argue that because all two-

dimensional SAW models are expected to have the same conformal field theory in the appropri-

ate scaling limit, we can expect some of the identities derived by Duminil-Copin and Smirnov

to be “approximately” true for all two-dimensional lattices. Moreover, in the limit of the lattice

size, the approximations should become exact identities.

Because these identities should hold only at the critical point of the SAW generating function

(i.e. the reciprocal of the growth constant of the lattice), this leads to a powerful new method for

computing numerical estimates of the growth constants of the square and triangular lattices. We

use existing algorithms (namely the finite lattice method) to generate series for SAWs in finite-

width strips of those lattices, and then use these series to compute a sequence of values x∗(T )

which we would expect, in the limit as T →∞, to converge to xc =µ
−1 for each lattice. We ex-

trapolate these sequences and find that they do indeed appear to converge to the critical points of

the square and triangular lattices, and in this way we compute estimates for the growth constants

whose precision is only slightly less (1-2 digits) than that of the best currently-known estimates.

In Chapter 3 we turn our attention to subclasses of SAWs and SAPs for which we are able

to calculate the exact generating functions or obtain recursive relations which allow fast compu-

tation of series coefficients. We first review some previously-studied models, including directed

and prudent walks, before focusing on prudent polygons. The enumeration of these objects by

perimeter has previously been considered by Schwerdtfeger [105], but our interest is in their

enumeration by area.

A large section of the chapter is devoted to a particular subclass of prudent polygons, namely

3-sided prudent polygons. We find that, while their area generating function is quite easily ob-

tained, determining the singular behaviour and the asymptotic form of the coefficients requires

some very careful analysis and a number of techniques from analytic combinatorics. While we

believe that this fact alone makes the model worthy of considerable interest, the result itself is

also very intriguing: the asymptotic form of the coefficients does not resemble that of any other

lattice model we are aware of. Not only is the critical exponent transcendental where we would

normally expect a small rational number, but the “amplitude” is not a constant, instead being a

periodic function of log n.

We then define and study some more general subclasses of square lattice SAWs and SAPs,

namely perimeter and quasi-prudent. For some of these we are able to exactly solve the gen-

erating functions, while in other cases we are forced to resort to numerical results based on

computer-generated series. Finally, we introduce some new solvable models on the triangular

and honeycomb lattices, settings which seem to be rarely considered in the wider literature.

The third main part, Chapter 4, deals with applications of SAWs to models of polymer ad-

sorption. We return to the ideas of Duminil-Copin and Smirnov, and show that some of their
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key identities can be generalised to account for weights associated with visits to an impenetrable

surface. Certain terms in our identities vanish at a particular value of the surface fugacity, and

this value turns out to be precisely the critical surface fugacity as conjectured by Batchelor and

Yung [7]. This allows us to formulate a proof of the critical surface fugacity, subject to the ad-

ditional requirement that a certain generating function vanishes in the limit of the lattice size.

The proof of that fact is presented in Appendix A. We also consider a different orientation of

the surface for the honeycomb lattice, and show that in that case we can also obtain an identity

involving the surface fugacity. The critical fugacity for that model was conjectured by Batch-

elor, Bennett-Wood and Owczarek [6]; we provide a proof of this value, subject to the same

requirement as the original orientation.

We then take the ideas used in Chapter 2, where we computed estimates for the growth

constants of the square and triangular lattices, and consider how they can be adapted for the

purpose of estimating the critical surface fugacities of a number of adsorption models. We use

the same arguments regarding the scaling limit of two-dimensional SAW models to infer that our

identities should be “approximately” true for all finite-width lattice strips, and should become

exact identities in the limit of the lattice size. The technique is then similar to the one used in

Chapter 2: we generate series for finite-width strips, and use these series to compute a sequence

of values which we expect to converge to the critical surface fugacity of the model in question.

For all the models we consider (edge- and vertex-weightings on the square and triangular lattices

and an additional vertex-weighted model on the honeycomb lattice) we find that the sequences

do indeed converge, and comparison with existing estimates for the square lattice corroborates

our expectation that the limits should be the critical fugacities. We thus obtain new estimates for

the critical surface fugacities; to our knowledge, these are the only estimates for the triangular

and honeycomb lattice models, while for the square lattice our estimates are several orders of

magnitude more precise than existing values.

Finally, we consider solvable models of polymer adsorption. After briefly reviewing existing

models based on directed walks, we introduce some new models based on prudent walks. These

have the pleasing property that they do not have a directedness constraint; that is, they are able

to take steps in all directions on the lattice. We find recursion relations satisfied by the series

coefficients of these walks, and then determine their generating functions by solving functional

equations which encode those recursions. A careful singularity analysis allows us to compute

the free energy of one of these models and make a strong conjecture for the other. We find that

the adsorption transitions of these models are rather unlike those of the simpler directed walks,

and we attempt to find an intuitive explanation for these differences.

In Appendix A is the proof that the generating function of self-avoiding bridges on the

honeycomb lattice which span a strip of width T , evaluated at the SAW critical point xc =

1/
Æ

2+
p

2, vanishes in the limit T →∞. This proof is largely due to Hugo Duminil-Copin,

and is presented here due to its relevance to results in Chapter 4.
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Appendix B contains a brief review of some of the methods used for generating and analysing

the series discussed in this thesis.
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Chapter 2

General SAWs and SAPs

The new methods and results presented in this chapter are largely inspired by the proof of

Duminil-Copin and Smirnov [34], announced in 2010, that the growth constant of SAWs on

the honeycomb lattice is
Æ

2+
p

2. Since our methods are so closely related to those used by

Duminil-Copin and Smirnov, we reproduce their proof in Section 2.1 and provide some related

identities for the O(n) loop model, a generalisation of the self-avoiding walk model.

In Section 2.2 we consider how the result of Duminil-Copin and Smirnov can be applied to

SAW models on other lattices – namely, the square and triangular lattices. While it seems that

their methods cannot be used to compute the precise values of the growth constants of those

lattices, it is possible to adapt them to obtain numerical estimates whose accuracy rivals those of

any other currently-known method.

We will further extend the Duminil-Copin and Smirnov method in Chapter 4, when we

examine the problem of polymer adsorption.

2.1 Exact results

The n-vector model, introduced by Stanley in 1968 [107] is described by the Hamiltonian

H (d , n) =−J
∑

〈i , j 〉
si · sj,

where d denotes the dimensionality of the lattice, and si is an n-dimensional unit vector. When

n = 1 this Hamiltonian describes the Ising model, and when n = 2 it describes the classical XY

model. Two other interesting limits, which leave a lot to be desired from a pure mathematical

perspective, are the limit n → 0, in which case one recovers the self-avoiding walk model, as

first pointed out by de Gennes [25], and the limit n = −2, corresponding to random walks, or

more generally a free-field Gaussian model, as shown by Balian and Toulouse [3]. Of particular

importance here is the fact that the n-vector model on the honeycomb lattice has been shown

[29] to be equivalent to a loop model with a weight n attached to closed loops.
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In 1982 Nienhuis [89] showed that, for n ∈ [−2,2], the model on the honeycomb lattice

could be mapped onto a solid-on-solid model, from which he was able to derive the critical

points and critical exponents, subject to some plausible assumptions. These results agreed with

the known exponents and critical point for the Ising model, and predicted exact values for those

models corresponding to other values of the spin dimensionality n. Smirnov [106] has recently

derived an identity for the general honeycomb O(n) model with n ∈ [−2,2], presented in

Lemma 2.1. This identity provides an alternative way of predicting the value of the critical

point xc(n) = 1/
Æ

2+
p

2− n as conjectured by Nienhuis for n ∈ [−2,2].

We define a mid-edge of the honeycomb lattice to be the point on an edge halfway between

its two adjacent vertices. Let H be the set of mid-edges of the honeycomb lattice. We define a

domainΩ⊂H to be a connected collection of mid-edges with the property that if two mid-edges

p, q ∈H are adjacent to a vertex v, then the third mid-edge adjacent to v must also be in H . The

set of vertices adjacent to the mid-edges of Ω is denoted V (Ω). Those mid-edges of Ω which are

adjacent to only one vertex in V (Ω) form ∂ Ω. A step in Ω is a vertex v ∈ V (Ω) together with

two of the three mid-edges adjacent to v. Two steps in Ω are adjacent if they contain different

vertices but share a mid-edge.

A configuration γ in Ω is a set of steps in Ω which either

(i) is empty;

(ii) contains a single step;

(iii) has the property that every step is adjacent to two other steps in γ ; or

(iv) has the property that every step is adjacent to two other steps in γ except for two special

steps, which are each adjacent to only one other step in γ .

It is clear then that a configuration is comprised of a (possibly empty) collection of mutually

disjoint closed loops together with a (possibly empty) self-avoiding walk which starts and ends

on mid-edges of Ω. We denote by |γ | the number of vertices in γ and by c(γ ) the number of

closed loops. For configurations with a non-empty SAW component, we can label one of the

endpoints a of the SAW as the starting point and the other endpoint z as the end, and we then

denote by W (γ : a→ z) the winding angle – the net angle (in radians) the walk turns through as

it runs from a to z (i.e. each left step adds π/3 to the winding angle and each right step subtracts

π/3). If the SAW component of γ is empty we just assign it a winding angle of 0.

We then define the following so-called parafermionic observable: for a ∈ ∂ Ω and z ∈Ω,

F (Ω,a, z; x, n,σ) := F (z) =
∑

γ⊂Ω:a→z

e−iσW (γ :a→z)x |γ |nc(γ ),

where the sum is over all configurations whose self-avoiding walk component starts at a and

ends at z. See Figure 2.1 for an example of a configuration and its contribution to F (z).

Smirnov [106] proves the following:
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a

z

Figure 2.1: A configuration (the dark lines) on a domain of the honeycomb lattice. The contri-

bution of this particular configuration to the observable F (z) would be eπiσ/3x45n2.

Lemma 2.1 (Smirnov). For n ∈ [−2,2], set n = 2cosθ with θ ∈ [0,π]. Then for

σ =
π− 3θ

4π
, x−1 = 2cos

�

π+θ

4

�

=
Æ

2−
p

2− n, or (2.1)

σ =
π+ 3θ

4π
, x−1 = 2cos

�

π−θ
4

�

=
Æ

2+
p

2− n, (2.2)

the observable F satisfies the following relation for every vertex v ∈V (Ω):

(p − v)F (p)+ (q − v)F (q)+ (r − v)F (r ) = 0, (2.3)

where p, q , r are the three mid-edges adjacent to v, and the multipliers (p − v), etc. are calculated

by considering p, q , r and v as points in the complex plane.

The first pair of values (2.1) corresponds to the larger of the two critical values of the step

weight x and thus describes the so-called dense regime, as configurations with many closed loops

are favoured. The second pair of values (2.2) corresponds to the line of critical points separating

the dense and dilute phases [89].

Proof. The lemma follows from considering contributions around the vertex v (see Figure 2.2).

There are two possible cases. In the following, we define λ = e−iσπ/3 (the weight accrued by a

walk for each left turn) and j = e2iπ/3 (the value of p − v when mid-edge p is to the north-west

of its adjacent vertex v1).

1More specifically, j is the value of p − v when p is to the north-west of its adjacent vertex v and the lattice is

oriented as in Figure 2.1; that is, when the lattice contains horizontal edges. If we rotate the lattice by angle θ then

that would simply result in the identity (2.3) being multiplied by eiθ.
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Figure 2.2: The two ways of grouping the configurations which end at mid-edges p, q , r adjacent

to vertex v. On the left, configurations which visit all three mid-edges; on the right, configura-

tions which visit one or two of the mid-edges.

1. In the first case (the left-hand side of Figure 2.2), all mid-edges p, q , r are visited by a

configuration and hence two of the three edges incident on v must be occupied. There

are three ways for this to occur: two with the self-avoiding walk visiting all three sites,

and one with a closed loop running through v. If we fix the rest of the configuration not

incident on v, the three contributions add up to zero if

j̄λ4+ j λ̄4+ n = 0.

This equation determines the possible values of the parameter σ . There are two solutions:

if j̄λ4 =−eiθ we get σ = π−3θ
4π , while if j̄λ4 =−e−iθ we get σ = π+3θ

4π .

2. In the second case (the right-hand side of Figure 2.2) only one or two mid-edges are occu-

pied in the configuration, and the condition that all contributions add up to zero becomes

1+ x j λ̄+ x j̄λ= 0,

which leads to

x−1 = 2cos
�π

3
(σ − 1)

�

.

The two possible values give rise to the corresponding two values for x. �

Duminil-Copin and Smirnov [34] use Lemma 2.1 to prove the growth constant of self-

avoiding walks (n = 0 in the dilute regime) is equal to x−1
c = 2cos(π/8) =

Æ

2+
p

2. They

establish an identity which relates generating functions of SAWs ending on the boundary of a
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2L

T

α
a

ε+

ε−

β

Figure 2.3: The special domain Ω= S3,1. The starting point of the SAW component of a config-

uration is fixed to be the middle of the left boundary, marked as a, and the mid-edges in ∂ Ω are

grouped into four sets α,β,ε+ and ε−.

special domain Ω= ST ,L, as shown in Figure 2.3. In Lemma 2.2 we present the generalisation of

this identity to arbitrary n ∈ [−2,2]. The proof is identical to that of [34].

Given the domain Ω= ST ,L, we define the generating functions

AT ,L(x) :=
∑

γ⊂ST ,L:a→α\{a}
x |γ |nc(γ ),

BT ,L(x) :=
∑

γ⊂ST ,L:a→β
x |γ |nc(γ ),

ET ,L(x) :=
∑

γ⊂ST ,L:a→ε+∪ε−
x |γ |nc(γ ),

where the sums are over all configurations whose SAW component runs from a to the α, β or

ε+,ε− boundaries respectively. Furthermore define the special generating function

CT ,L(x, y) :=
∑

γ⊂ST ,L:a→a

x |γ |nc(γ )

which sums over configurations comprising only closed loops inside ST ,L; that is, configurations

whose self-avoiding walk component is the empty walk a→ a.

Lemma 2.2. Let n = 2cosθ with θ ∈ [0,π] and define

xc =
1

2
cos

�

π±θ
4

�−1

=
�

2∓
p

2− n
�−1/2

.

Then

CT ,L(xc) = cos

�

3(π±θ)
4

�

AT ,L(xc)+ cos

�

π±θ
2

�

ET ,L(xc)+BT ,L(xc). (2.4)
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Proof. Let pv , qv , rv be the mid-edges adjacent to a vertex v. We set x = xc and compute the

sum
∑

v∈V (ST ,L)

(pv − v)F (pv )+ (qv − v)F (qv )+ (rv − v)F (rv ) (2.5)

in two ways. Firstly, (2.3) holds for all v ∈V (ST ,L), so (2.5) adds to 0. On the other hand, any

mid-edge in ST ,L\∂ ST ,L will contribute to two terms in the sum, and these two terms will be

precisely the negatives of one another, and hence will cancel. So the only mid-edges which do

not cancel in this way are those in ∂ ST ,L; their contributions are

−
∑

z∈α
F (z)+ j

∑

z∈ε+
F (z)+ j̄

∑

z∈ε−
F (z)+

∑

z∈β
F (z). (2.6)

Now SAWs which start at a and end at z ∈ α can be divided into three groups: those ending

above a, below a, and the empty walk. By symmetry the generating functions of the first two

groups are equal, and their winding angles will be π and −π respectively. So we have

∑

z∈α
F (z) =CT ,L(xc)+

λ3+ λ̄3

2
AT ,L(xc)

=CT ,L(xc)+ cos

�

π∓ 3θ

4

�

AT ,L(xc)

(2.7)

Similarly, by symmetry the generating functions of walks ending in ε+ and ε− are equal with

winding angles 2π/3 and −2π/3 respectively, and we obtain

j
∑

z∈ε+
F (z)+ j̄

∑

z∈ε−
F (z) =

jλ2+ j̄ λ̄2

2
ET ,L(xc)

= cos

�

π±θ
2

�

ET ,L(xc).

(2.8)

Since walks ending in β have winding angle 0, we also have

∑

z∈β
F (z) = BT ,L(xc). (2.9)

So equating (2.6) with 0 and substituting (2.7), (2.8) and (2.9), we obtain

0=−CT ,L(xc)− cos

�

π∓ 3θ

4

�

AT ,L(xc)+ cos

�

π±θ
2

�

ET ,L(xc)+BT ,L(xc),

and the lemma follows. �

Lemma 2.2 is further generalised in Chapter 4, where we introduce another weight y asso-

ciated with occupied vertices in the β boundary. For now, however, we are only interested in

self-avoiding walks, so we take (2.4) in the dilute regime and set n = 0:

1= cos
�3π

8

�

AT ,L(xc)+ cos
�π

4

�

ET ,L(xc)+BT ,L(xc) (2.10)
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with xc =
Æ

2+
p

2
−1

.

Duminil-Copin and Smirnov [34] then use (2.10) in their proof.

Theorem 2.3 (Duminil-Copin & Smirnov). The growth constant of self-avoiding walks on the

honeycomb lattice is

µ= x−1
c =

Æ

2+
p

2.

All terms in (2.10) are non-negative, and AT ,L(xc) and BT ,L(xc) are non-decreasing with L (as

L increases, more walks are counted by these generating functions). It follows that ET ,L(xc) is

non-increasing with L, and so all the terms in (2.10) have limits as L→∞. Taking this limit, we

obtain

1= cos
�3π

8

�

AT (xc)+ cos
�π

4

�

ET (xc)+BT (xc). (2.11)

The generating functions AT (x) and BT (x) now count walks in a strip – AT (x) counts walks

which start and end on the same side of the strip, while BT (x) counts walks which start and

end on opposite sides of the strip. It is not entirely clear what the object ET (x) is (the walks it

“counts” are infinitely long), but as we will see, it turns out ET (x) is irrelevant to our calculations.

Lemma 2.4.

xc ≤µ
−1.

Proof. Define xc(T ) to be the radius of convergence of AT (x). By Lemma 6.1 of [115], we

have xc(T )> xc(T + 1) (that result is for a hypercubic lattice, but the proof for the honeycomb

lattice is identical; in Section 4.1 we will demonstrate a generalisation of this result in which

we associate a fugacity y with visits to vertices in the β boundary), and then by Theorem 6.2

of [115],

lim
T→∞

xc(T ) =µ
−1.

In particular, xc(T )>µ
−1 for all T . Since (2.11) implies that AT (x) is a convergent power series

for x ≤ xc and for all T , it follows that xc ≤ xc(T ), which gives the lemma. �

Corollary 2.5.

ET (x)≡ lim
L→∞

ET ,L(x) = 0 for x ≤ xc.

Proof. If ZT (x) is the generating function for all walks in a strip of width T starting at the point

a, then ZT (x) has the same radius of convergence as AT (x). (The equivalent result for the square

lattice is Corollary 4.7 of [115]. We again prove a generalisation of this result for the honeycomb

lattice in Section 4.1.) Then by Lemma 2.4, ZT (x)<∞ for all x ≤ xc and for all T . In particular,

∑

L≥0

ET ,L(xc)≤ ZT (xc)<∞,

so ET ,L(xc)→ 0 as L→∞. �
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So (2.11) can be reduced to

1= cos
�3π

8

�

AT (xc)+BT (xc). (2.12)

Proof of Theorem 2.3. It remains to be shown that xc ≥ µ−1. Since µ−1 is the radius of conver-

gence of Z(x) (the generating function of all half-plane walks; this follows from arguments in

e.g. [118]), it suffices to show

Z(xc) =∞.

First, note that any walk counted by AT (x) but not AT−1(x)must span the entire strip of width

T . Such a walk can then be cut at the first visit to the β boundary, and by adding half-edges to

the two pieces we obtain a unique pair of walks counted by BT (x). So it follows that

AT (x)−AT−1(x)≤ xBT (x)
2. (2.13)

If we take x = xc in (2.13) then we can substitute (2.12), and we obtain

xc cos
�3π

8

�

BT (xc)
2+BT (xc)≥ BT−1(xc).

It then follows by induction that

BT (xc)≥min
�

B1(xc), sec
�3π

8

�

x−1
c

�

/T , (2.14)

and so

Z(xc)≥
∑

T≥0

BT (xc) =∞. �

2.2 Numerical estimates

Unfortunately the proof of Duminil-Copin and Smirnov identifying the growth constant of the

honeycomb lattice cannot be repeated for the square and triangular lattices, as there is no known

appropriate parafermionic observable satisfying an identity like (2.3). As shown by Ikhlef and

Cardy [69], the dilute O(n) model on the square lattice does have a parafermionic observable,

and this can be used to identify its critical point. In the n→ 0 limit, however, that model is not

the usual SAW model.2

However, it was pointed out by Cardy [22] that in the appropriate scaling limit all two-

dimensional self-avoiding walk models, at their respective critical points, have the same confor-

mal field theory [28, 69, 106]. It follows that we may expect an “identity” like (2.12) to hold for

these other lattices in the limit T →∞. This raises two important questions:

1. How do these “identities” differ from (2.12)? For example, do the constants change, or

can we identify correction terms which vanish as T →∞?

2It is a model where walks are allowed to visit vertices more than once but may not repeat edges.
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2. Can these “identities” be used to obtain new results, such as accurate estimates for the

growth constants of these lattices?

We attempt to answer the first question by calculating data for the generating functions

AT (x) and BT (x) in strips, for T ≤ 15 on the square lattice and for T ≤ 11 on the triangular

lattice (we also compute data for T ≤ 10 on the honeycomb lattice). Using the best available

estimates for the critical points of these models, namely [77, 72, 75]

xc(sq)≈ 0.37905227776

xc(tr)≈ 0.2409175745
(2.15)

(with uncertainty in the last digit of each), we search for solutions to “identities” of the form

1= cα(T )AT (xc)+ cβ(T )BT (xc)

1= cα(T )AT+1(xc)+ cβ(T )BT+1(xc)
(2.16)

and examine the behaviour of cα(T ) and cβ(T ) as T increases.3

More details appear below in Subsections 2.2.2 and 2.2.3, but in summary we find a weak

T dependence in both coefficients cα(T ) and cβ(T ). More significantly however, we conjecture

that

lim
T→∞

cα(T )/cβ(T ) = cos(3π/8), (2.17)

just as in the honeycomb lattice case, based on agreement to more than 5 significant digits for

both the square and triangular lattices. In hindsight, this is perhaps not too surprising, as the

constants multiplying the two generating functions arise from the winding angle of contributing

graphs, and these are independent of lattice for the two generating functions considered, being

±π radians for AT (x) and 0 for BT (x).

This behaviour suggests an affirmative answer to our second question, by implying that by

seeking solutions x∗(T ) to

cos(3π/8)AT (x)+BT (x) = cos(3π/8)AT+1(x)+BT+1(x),

we would expect to find x∗(T )→ xc as T →∞. Indeed, in this way we estimate

xc(sq) = 0.3790522775± 0.0000000005

and

xc(tr) = 0.240917572± 0.000000005.

These estimates are comparable to those in (2.15) obtained by other methods.

3Where no confusion should arise we will use xc in this section to denote the critical point of any of the three

regular two-dimensional lattices; in cases of ambiguity, we will specify the lattice by xc(sq), etc.
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Finally, we study numerically the behaviour of the two generating functions AT (x) and

BT (x) as T →∞. We compute estimates of a0 =A(xc), on the square and triangular lattices. We

also find that

BT (xc)∼ const./T α,

where α≈ 0.25, which matches a prediction of Duminil-Copin and Smirnov [34]. Similarly, we

can investigate how ÃT (xc) = AT (xc)− a0 behaves as T tends to infinity. If BT (xc) does indeed

decay like T −1/4 then we should expect the same behaviour in ÃT (xc), and this is observed

numerically.

We note here that the estimates for critical points, amplitudes, etc. for the square and tri-

angular lattices computed in this section are biased estimates – that is, their validity is reliant

upon unproven assumptions about the limiting behaviour of AT (xc) and BT (xc). (Namely, our

estimates depend on the validity of statements like (2.16) and (2.17).) Of course, since the pre-

cision obtained here is no greater than that of existing (unbiased) estimates, this poses no great

problem at this stage.

2.2.1 Honeycomb lattice

Duminil-Copin and Smirnov proved that on the honeycomb lattice, the unique solution of

cos(3π/8)AT (x)+BT (x) = 1, (2.18)

for any T ≥ 0, occurs at x = xc = 1/
Æ

2+
p

2. (Their identity also involved an ET (x) term, but

by Corollary 2.5 this term can be ignored.) It follows then that we could work backwards: given

only the simple rational generating functions A0(x) and B0(x), we could identify the exact value

of xc simply by seeking the solution of

cos(3π/8)A0(x)+B0(x) = 1.

If we did not already know xc (but knew it was the value which satisfies this identity), this would

be a particularly simple way to find it.

In a further demonstration of this invariant, we show in Figure 2.4 a plot of

cos(3π/8)AT (x) + BT (x) for T ∈ [1 . . . 10], where it can be seen that the curves intersect at

(xc, 1), in accordance with the identity (2.12).

Let us assume that we didn’t even know the Duminil-Copin and Smirnov identity (2.12),

but rather just conjectured that some linear combination of AT (xc) and BT (xc) was invariant.

We write this invariant as λAT (xc) +BT (xc). Then by seeking the solutions, for x > 0, λ > 0 of

the equations

λA0(x)+B0(x)−λA1(x)−B1(x) = 0,

and

λA2(x)+B2(x)−λA1(x)−B1(x) = 0,
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Figure 2.4: Plot of cos(3π/8)AT (x)+BT (x) for T ∈ [1..10], for the honeycomb lattice, showing

intersection of all curves at (xc, 1). The insert shows a close-up of the region of intersection.

we could discover both the invariant and the exact value of the critical point from the exact

solutions for strips of small width. As we show below, this suggests a way to approximate xc for

other lattices, by similar means.

Next we consider the behaviour of the generating functions AT (x) and BT (x) in the limit

T →∞. Denote limT→∞BT (x) by B(x), with a similar definition of A(x). We wish to under-

stand exactly how BT (xc) behaves as T →∞, and in particular if we can verify the conjectured

behaviour [34] BT (xc) ∼ c/T 1/4. (Appendix A contains a proof that BT (xc) → 0 as T → ∞,

though we still do not have a rigorous proof of the exponent.)

If BT (xc) ∼ const./T α, a log-log plot of BT (xc) against T should be linear with slope −α as

T →∞. We only have data for width T ≤ 10, so the gradient is still changing slightly with T

in that plot. To accommodate this, we extrapolate estimates of the local gradient of the log-log

plot. We define the local gradient as

gradB(T ) = log

�

BT (xc)

BT−1(xc)

�

/ log

�

T

T − 1

�

,

(this is of course just the gradient of the line connecting two consecutive points in the log-log

plot) and plot gradB(T ) against 1/T 0.85, where the exponent 0.85 was chosen empirically to

make the plot linear. The last few points of the plot are shown in Figure 2.5, and it is manifestly

clear that the locus extrapolates to a value of α≈ 1/4.

From (2.12) it follows that if BT (xc) ∼ c/T 1/4, then ÃT (xc) = AT (xc)− a0 also decays as

T −1/4, and this was observed numerically by a similar plot to Figure 2.5.
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Figure 2.5: Plot of the last few points of the local gradient of BT (xc) and T against 1/T 0.85. The

straight line is a linear fit to the data in the plot.

2.2.2 Square lattice

As discussed above, there is no parafermionic operator that applies to the SAW model on the

square lattice or the triangular lattice, so we can’t identify the critical point for SAWs on these

lattices as did Duminil-Copin and Smirnov for honeycomb SAWs. We might, however, expect

that in the limit L → ∞ (so that we are again considering SAWs in a strip) there should be a

similar relationship between the two generating functions AT (x) and BT (x), perhaps with some

T -dependence that vanishes as T →∞.

That is to say, while the relationship

1= cos(3π/8)AT (xc)+BT (xc),

which is an identity for honeycomb lattice SAWs for finite width T , cannot be expected to hold

for the square and triangular lattices, we might expect that solutions to

1= cα(T )AT (xc)+ cβ(T )BT (xc)

1= cα(T )AT+1(xc)+ cβ(T )BT+1(xc)
(2.19)

would display only a very weak T -dependence, and would quickly converge to constant limits.

We have computed data for the square lattice generating functions in strips of width T , that

is, AT (x) and BT (x), for T ≤ 15, and used our best estimate 1/xc = 2.63815853031 [77, 72]

to tabulate AT (xc) and BT (xc), shown in Table 2.1. In [34] these generating functions for the
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Table 2.1: Estimates of AT (xc) and BT (xc) for the square lattice.

T AT (xc) BT (xc)

1 0.684928096008073 0.760082094484555

2 0.825972541624066 0.707257323612670

3 0.927565166390104 0.668934606497192

4 1.006072923950508 0.639202723889591

5 1.069537792384553 0.615108345881821

6 1.122482001562161 0.594974760428940

7 1.167689112421950 0.577763265643123

8 1.206987841982332 0.562788338725227

9 1.241640411741764 0.549575210877016

10 1.272552495675558 0.537782341996967

11 1.300394615482380 0.527156358502502

12 1.325676196007041 0.517504450137522

13 1.348792763213512 0.508676719252903

14 1.370057142972426 0.500554481834765

15 1.389720731591218 0.493042273647721

honeycomb lattice were defined to include an extra half-step at the beginning of the walk and

at the end of the walk. This introduces an extra factor of x (or, as appropriate, xc) and we have

used this definition of the generating functions AT (x) and BT (x) for the square lattice data.

We then fitted successive pairs of values (AT (xc),BT (xc)) and (AT+1(xc),BT+1(xc)) for T =

1 . . . 14 to (2.19) and solved the associated linear equations for cα(T ) and cβ(T ), using our best

estimate of xc. In Figures 2.6 and 2.7 we show plots of values of cα(T ) against 1/T 1.15 and cβ(T )

against 1/T 0.85.

We have no basis for assuming that this is the correct form we should choose to extrapolate

these plots; rather, the T -dependence was chosen experimentally to give a linear plot. Extrap-

olated to T =∞, we find cα ≈ 0.3734 and cβ ≈ 0.9756. To obtain more precise estimates, we

extrapolated these sequences using the Bulirsch-Stoer algorithm [21]. This algorithm requires a

parameter w which can be thought of as a correction-to-scaling exponent. For the purpose of

the current exercise, we have set this parameter to 1, corresponding to a T −2 correction term;

this was chosen to match the observed behaviour of the generating functions (see below for fur-

ther details). Our implementation of the algorithm is precisely as described by Monroe [88],

and we retained 40 digit precision throughout. We also applied a range of standard extrapolation

algorithms to the sequences {cα(T )} and {cβ(T )}. These were Levin’s u-transform, Brezinskii’s

θ algorithm, Neville tables, Wynn’s ε algorithm and the Barber-Hamer algorithm. Descriptions
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Figure 2.6: Plot of cα(T ) against 1/T 1.15 for square lattice A walks. The straight line is a linear

fit to the last seven data-points in the plot.

of these algorithms, and codes for their implementation, can be found in [52]. These gave results

totally consistent with, but less precise than, those from the Bulirsch-Stoer algorithm.

In this way we estimated cα = 0.373362± 0.000001 and cβ = 0.975644± 0.000002. Thus the

ratio cα/cβ = 0.382683(2). For the honeycomb lattice the corresponding ratio is cos(3π/8) =

0.3826834 . . . , which is close to, and probably equal to, the square lattice value. We shall see in

the next section that this apparent agreement also holds for the triangular lattice.

Assuming that cα/cβ = cos(3π/8) for the square lattice, we calculated elements of the se-

quence cos(3π/8)AT (xc) + BT (xc) and extrapolated these using the same method as described

above. We found the limit of the sequence to be 1.024966± 0.000001, compared to a value of

exactly 1 for the honeycomb lattice. Using this estimate of the limit, we plotted

log(cos(3π/8)AT (xc)+BT (xc)− 1.024966)

against logT . The plot displayed slight curvature, so we plotted the local gradient,

log

�

cos(3π/8)AT (xc)+BT (xc)− 1.024966

cos(3π/8)AT−1(xc)+BT−1(xc)− 1.024966

�

/ log

�

T

T − 1

�

against 1/T . This extrapolated to a value in the range (1.9,2.1), so we took the central value and

concluded that 1.024966− c1

T 2 ≈ cos(3π/8)AT (xc)+BT (xc) is the asymptotic behaviour. Finally,

extrapolating estimates of the constant c1, we estimate c1 ≈ 0.14± 0.02. So our final result is

1.024966−
0.14

T 2
≈ cos(3π/8)AT (xc)+BT (xc),
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Figure 2.7: Plot of cβ(T ) against 1/T 0.85 for square lattice B walks. The straight line is a linear

fit to the last seven data-points in the plot.

which is an accurate mnemonic for square lattice strips.

It has been proven (see Appendix A) that on the honeycomb lattice, BT (xc)→ 0 as T →∞.

This strongly suggests that the same behaviour should be observed on the square and triangular

lattices. If true, this implies 1 ≈ 0.3733621A(xc), giving a prediction for the critical amplitude

A(xc) ≈ 2.678365. Current series estimates (unpublished4) are 2.66 ± 0.03, some 4 orders of

magnitude less accurate than this new estimate.

For the honeycomb lattice the intersection point of cos(3π/8)AT (x) + BT (x) for any two

distinct values of T uniquely determines xc. For the square and triangular lattices, we instead

looked at the intersection point of cos(3π/8)AT (x) + BT (x) and cos(3π/8)AT+1(x) + BT+1(x).

Call this intersection point x∗(T ). Then one might expect limT→∞ x∗(T ) = xc. We calculated

these points (see Table 2.2), and extrapolated the sequence {x∗(T )} using the same Bulirsch-Stoer

method described above, and in this way we estimated

xc = 0.3790522775± 0.0000000005.

This estimate can be compared to the best series estimates, based on analysis of very long poly-

gon series, of xc = 0.37905227776 [77, 72], with uncertainty in the last digit. Thus this method

is seen to be a powerful new method for estimating critical points, giving very good accuracy,

though it doesn’t rival the most powerful methods based on series analysis of polygon series.

4Thanks to Tony Guttmann and Iwan Jensen for supplying this.
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Table 2.2: Estimates of x∗(T ) and cos(3π/8)AT (x
∗(T ))+BT (x

∗(T )) for the square lattice.

T x∗(T ) cos(3π/8)AT (x
∗(T ))+BT (x

∗(T ))

1 0.3788492524430118 1.020519674456135

2 0.3789563888425186 1.022008494651236

3 0.3789993272206387 1.022854223759819

4 0.3790200211228027 1.023383853320655

5 0.3790312102673680 1.023737120932237

6 0.3790377790369609 1.023984250161982

7 0.3790418841341524 1.024163781522133

8 0.3790445790762211 1.024298263768565

9 0.3790464201463068 1.024401585674300

10 0.3790477199337992 1.024482674335293

11 0.3790486632778957 1.024547477105570

12 0.3790493642305414 1.024600079027025

13 0.3790498957528298 1.024643360731480

14 0.3790503059898279 1.024679400527091

However it does give comparable accuracy to methods based on series analysis of SAWs (rather

than SAPs).

T -dependence of the generating functions AT (xc) and BT (xc).

As for the honeycomb lattice, it is expected that BT (xc) ∼ const./T 1/4. In Figure 2.8 we have

plotted estimates of the exponent

gradB(T ) = log

�

BT (xc)

BT−1(xc)

�

/ log

�

T

T − 1

�

against 1/T 0.85. This local gradient should approach −1/4 and from the plot is seen to do so.

As for the honeycomb lattice, from (2.12) it follows that if BT (xc) ∼ const./T 1/4, then

ÃT (xc) = AT (xc)− a0 also decays as T −1/4. This was observed numerically by a similar plot

to that described in the preceding paragraph.

Alternative estimate of the critical point

For the square lattice, we expect the simultaneous solution of the pair of equations

λAT−1(x)+BT−1(x)−λAT (x)−BT (x) = 0,

and

λAT (x)+BT (x)−λAT+1(x)−BT+1(x) = 0,
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Figure 2.8: Plot of gradB(T ) against 1/T 0.85 for square lattice B walks. The straight line is a

linear fit to the last seven data-points in the plot. Linear extrapolation to -0.25 is well supported.

to give a sequence of estimates x†(T ) that should converge to the critical point xc. Similarly,

the parameter λ should converge to the ratio cα/cβ = cos(3π/8). The merit of this method of

estimating the critical point is that it makes no assumption about the value of λ, while the other

method assumes that λ= cos(3π/8).

We solved these equations by seeking the solution of

(AT−1(x)−AT (x))(BT+1(x)−BT (x)) = (AT (x)−AT+1(x))(BT (x)−BT−1(x)),

which we call x†(T ), and then found λ(T ) by back substitution. The results are shown in

Table 2.3.

We plotted (not shown) the estimates of x†(T ), against various powers of 1/T , and found

a linear plot if we plotted against 1/T 2. We extrapolated the estimates x†(T ) for steadily in-

creasing T values using the same Bulirsch-Stoer extrapolation method described above. Rapid

convergence was observed, and we estimate xc = 0.37905228± 0.00000001. This is consistent

with the limit found from our previous method described above, though not quite as precise.

We have similarly extrapolated the estimates of λ(T ), and find λ≈ 0.38268, compared to the

expected value cos(3π/8) = 0.382682.
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Table 2.3: Estimates of x†(T ) and λ(T ) for the square lattice.

T x†(T ) λ(T )

2 0.3792132510996564 0.3680865016160631

3 0.3791354275802486 0.3724957043646600

4 0.3791014587212902 0.3750327779790171

5 0.3790837649841775 0.3766921607963391

6 0.3790736177161640 0.3778473665510655

7 0.3790673896037665 0.3786868392606266

8 0.3790633602596354 0.3793176229093515

9 0.3790606406190476 0.3798046222881576

10 0.3790587398862656 0.3801891415440993

11 0.3790573721782793 0.3804985249279112

12 0.3790563633515162 0.3807514859621669

13 0.3790556032334455 0.3809611990869139

14 0.379055019822686 0.3811371681858631

2.2.3 Triangular lattice

We have also generated data for the triangular lattice in strips of widths up to and including 11.

Using the best estimate [75] of the critical point, xc = 0.2409175745, we show, in Table 2.4, the

values of AT (xc) and BT (xc) for each strip width. For the triangular lattice there are two edges

incident upon the origin in a strip geometry, and this complicates matters. (See Figure 2.9 for

an illustration.) To simplify things, we start and finish our SAWs on the boundary in the case of

the triangular lattice, in order to avoid the complications that arise when including an incident

edge. So the extra factor of xc included in the definition of these amplitudes for the square and

honeycomb lattice data is not present in the triangular lattice data.

As in the analysis of the square lattice data, we fitted successive pairs of values (AT (xc),BT (xc))

and (AT+1(xc),BT+1(xc)) for T = 1 . . . 10 to

1= cα(T )AT (xc)+ cβ(T )BT (xc)

1= cα(T )AT+1(xc)+ cβ(T )BT+1(xc),

and solved the associated linear equations for cα(T ) and cβ(T ).

To obtain precise estimates, we again applied the Bulirsch-Stoer extrapolation algorithm to

the sequences {cα(T )} and {cβ(T )}. Combining the results from these different algorithms, we

estimate cα = 0.2012028(3) and cβ = 0.525770(3). Thus the ratio cα/cβ = 0.382682(3). For the

honeycomb lattice the corresponding ratio is cos(3π/8) = 0.3826834 . . . , which (as we also saw

for the square lattice) is close to, and probably equal to, the triangular lattice value.
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Figure 2.9: A section of a strip of the triangular lattice. Note that vertices on the boundaries

of the strip are incident to two different external mid-edges. For this reason, for the triangular

lattice calculations we consider walks to start and end at vertices rather that mid-edges.

Table 2.4: Estimates of AT (xc) and BT (xc) for the triangular lattice.

T AT (xc) BT (xc)

1 1.139480549210468 1.457161363236105

2 1.435344242350752 1.348134252648887

3 1.641756149326264 1.270897362392145

4 1.798515045521241 1.211810836367619

5 1.923848231267622 1.164374555192450

6 2.027608945103857 1.125001488941636

7 2.115709764900265 1.091512525007183

8 2.191966367371986 1.062490013670246

9 2.258977760090717 1.036962918106255

10 2.318589791981952 1.014238779515961

11 2.372157936598986 0.993807536013206
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Table 2.5: Estimates of x∗(T ) and cos(3π/8)AT (x
∗(T ))+BT (x

∗(T )) for the triangular lattice.

T x∗(T ) cos(3π/8)AT (x
∗(T ))+BT (x

∗(T ))

1 0.2406280859767665 1.887740698623511

2 0.2407992581986084 1.893455041773400

3 0.2408577458655671 1.896277560401485

4 0.2408831660425418 1.897888855534072

5 0.2408959926648450 1.898898663967309

6 0.2409031617790197 1.899574374861755

7 0.2409074803284284 1.900049163002255

8 0.2409102353990879 1.900395685815981

9 0.2409120748141937 1.900656411828138

10 0.2409133491646394 1.900857546720268

Assuming the ratio cα/cβ = cos(3π/8) for the triangular lattice too, we extrapolated

cos(3π/8)AT (xc) + BT (xc) for increasing values of T , using our standard suite of extrapolation

algorithms and the Bulirsch-Stoer algorithm. We estimated the limit to be 1.901979± 0.000001.

We then repeated the analysis described above for the square lattice data mutatis mutandis, and

found

1.901979−
0.1

T 2
≈ cos(3π/8)AT (xc)+BT (xc).

As remarked above, it is expected that limT→∞BT (xc) = B(xc) = 0. Thus in the limit of infinite

strip width we expect 1.901979≈ cos(3π/8)A(xc), a prediction for the critical amplitude A(xc)≈
4.970111.

As for the square lattice case, we estimated the critical point xc by extrapolating the inter-

section point of cos(3π/8)AT (x) + BT (x) and cos(3π/8)AT+1(x) + BT+1(x), called x∗(T ) (see

Table 2.5). One expects limT→∞ x∗(T ) = xc.

In this way we estimated

xc = 0.240917572± 0.000000005

for the triangular lattice. This can be compared to the best series estimate, based on analysis of

very long polygon series xc = 0.2409175745 [75] with uncertainty in the last quoted digit.

T -dependence of the generating functions AT (xc) and BT (xc).

As for the honeycomb and square lattices, we expect BT (xc)∼ const./T 1/4. We plotted estimates

of the exponent

gradB(T ) = log

�

BT (xc)

BT−1(xc)

�

/ log

�

T

T − 1

�
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against 1/T 0.85, which should approach −1/4, and were seen to do so. The figure was visually

indistinguishable from the corresponding Figure 2.8 for the square lattice, so is not shown.

Similarly, it follows from (2.12) that ÃT (xc) = AT (xc)− a0 ≈ AT (xc)− 4.97011 decays as

1/T 1/4 as T tends to infinity. As we did for the square lattice case, we also confirmed this

numerically.

Alternative estimate of the critical point

In the previous section, we showed that, for the square lattice data, the simultaneous solution of

the pair of equations

λAT−1(x)+BT−1(x)−λAT (x)−BT (x) = 0,

and

λAT (x)+BT (x)−λAT+1(x)−BT+1(x) = 0,

gives a sequence of estimates x†(T ) that is expected to converge to the critical point xc. Similarly,

the parameter λ converges to the ratio cα/cβ = cos(3π/8), where the equality is conjectural. We

solved these equations using the triangular lattice data, by seeking the solution of

(AT−1(x)−AT (x))(BT+1(x)−BT (x)) = (AT (x)−AT+1(x))(BT (x)−BT−1(x)),

called x†(T ), and then found λ(T ) by back substitution. The results are shown in Table 2.6.

We plotted (not shown) the estimates of x†(T ), against various powers of 1/T , and found a

linear plot if we plotted against 1/T 2. We analysed the sequences in precisely the same way as for

the corresponding square lattice data, using the Bulirsch-Stoer algorithm. For the critical point

we estimate xc = 0.240917575± 0.000000005. This is of comparable precision to the other esti-

mate given above, but slightly less precise than the best series estimate [75] of xc = 0.2409175745,

with uncertainty in the last digit.

Thus this method is again seen to be a powerful one for estimating critical points, giving

very good accuracy. We have similarly extrapolated the estimates of λ(T ), and find λ≈ 0.38268,

compared to the expected value cos(3π/8) = 0.382682, exactly as for the square lattice.
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Table 2.6: Estimates of x†(T ) and λ(T ) for the triangular lattice.

T x†(T ) λ(T )

2 0.241168440165255 0.356318356471223

3 0.241030169141752 0.366143831978748

4 0.240977832351101 0.371147184391665

5 0.240953612190006 0.374091365359823

6 0.240940839933527 0.375992279128027

7 0.240933460889859 0.377300697288292

8 0.240928899289076 0.378244599187661

9 0.240925927855959 0.378950553554884

10 0.240923909640445 0.379493901730187
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Chapter 3

Solvable subclasses

It has been clearly illustrated throughout Chapters 1 and 2 that, while many facts are known

about the general models of self-avoiding walks and polygons, they are still a long way from

being regarded as “solved”. In order to say that such a combinatorial model has been solved, one

would ideally like to have an explicit formula for cn , the number of SAWs of length n. Failing

this, an explicit expression for the generating function

Z(x) =
∑

n≥0
cn xn

would suffice. Lacking even this, it would still be a huge step forward for one to prove the exact

asymptotic form of cn ; for example, to prove that

cn ∼Anα−1µn

as n → ∞, with the constants A,α and µ exactly known. But in two and three dimensions,

only the existence of the growth constant µ has been proved, and its value µ=
Æ

2+
p

2 for the

honeycomb lattice [34].

While methods like those described in Chapter 2 offer hope that progress can be made to-

wards “solving” general SAW and SAP models, many researchers have turned their focus to-

wards simpler models for which solutions can be obtained. These simpler models are usually

subclasses of SAWs or SAPs which are defined by placing restrictions on the way the objects

can be constructed. Typically, the hope is that the solutions of these models can aid in the un-

derstanding of the general, more complex models. Beyond this goal, the consideration of such

models has served as a powerful incentive to develop new counting methods based on gener-

ating functions [19, 26, 44, 109], including transfer matrix methods and what is known as the

“kernel method”, which will be discussed later in this chapter. Furthermore, these objects can

be modified so as to be useful in modelling physical objects like polymers and vesicles, and the

solutions of these models can display interesting critical behaviour. (In Chapter 4 a number of

these models are considered in the context of polymer adsorption.)
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In this chapter we consider a number of self-avoiding walk and polygon subclasses which are

either solvable (in at least one of the senses described above) or are such that the sequence {an},
enumerating the objects of size n, can be generated recursively in polynomial time. (This is in

contrast to general SAWs and SAPs, for which the fastest algorithms still take exponential time

– see Appendix B for further details.)

In Section 3.1 we study some of the simplest such objects, namely directed walks. For the

most part these models were solved decades ago, and their solutions are relatively simple. This

simplicity lends itself well to extending these models for use in polymer models, like adsorption

and collapse, and there is a large body of work in which these models are studied in depth.

In Section 3.2 we consider a newer and more general class of objects: prudent walks and poly-

gons. Several of these models have been solved in the last few years by a number of researchers;

we present some new results which, in some cases, have surprising and unusual properties. Some

of the methods we develop for analysing these solutions use concepts which we believe have

never been applied to this type of problem. In Chapter 4 we also adapt some prudent walk

models to the polymer adsorption problem, and observe that they display interesting critical

phenomena.

Further generalisations of these models are studied in Section 3.3, including perimeter and

quasi-prudent walks and polygons. We present new solutions for several classes of these objects.

However, despite sharing a number of features with prudent walks and polygons, these models

are for the most part not exactly solvable (by currently-known methods), and so we are often

restricted to writing down functional equations and recursive algorithms.

In Sections 3.4 and 3.5 we consider the ways in which some of the models described above

can be adapted to lattices other than the square lattice, namely the triangular and honeycomb

lattices. We define and solve several new subclasses of SAWs on these lattices, including what we

believe to be the most numerous (in terms of the growth constant) solved models. We again find

a number of cases where we are unable to derive exact solutions.

Classifying generating functions

Before commencing our study of solvable models, we will briefly review some commonly-used

terminology regarding the complexity of generating functions. (See, for example, [44, Appendix

B.4] for further details.)

The simplest generating functions considered in this thesis are rational functions; these, of

course, can be written as the ratio of two polynomials in the power series variable. The next

most general class of generating functions is algebraic; these are solutions to polynomial equa-

tions whose coefficients are polynomials in the series variable. That is, a function f (x) is alge-

braic if there exists a two-variable polynomial P (x, y) such that P (x, f (x)) = 0.

The natural generalisation of algebraic functions is D-finite;1 these are solutions to linear

1Also known as holonomic functions.
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ODEs whose coefficients are polynomials in the series variable. That is, a function f (x) is

D-finite if it is the solution to an equation of the form

cn(x)
d n

d xn f (x)+ cn−1(x)
d n−1

d xn−1
f (x)+ · · ·+ c0(x) f (x) = 0, (3.1)

where the coefficients ci (x) are polynomials in C[x]. It follows from (3.1) that the coefficients

fn of f (x) will satisfy a recurrence of the form

bck (n) fn+k + bck−1(n) fn+k−1+ · · ·+ bc0(n) fn = 0, n ≥ n0

for some n0, k ≥ 0, where the coefficients bci (n) are polynomials.

It is not terribly difficult (again, see [44] for further details) to verify that algebraic functions

are in fact D-finite, so that we have the hierarchy

rational ⊂ algebraic ⊂ D-finite.

It also follows from (3.1) that a D-finite function can only have a finite number of singularities

in the complex plane.

The above definitions can also be generalised to multivariate generating functions.2

3.1 Directed walks

In this section we define a self-avoiding walk to be directed if there is a direction on the lattice in

which it never steps. (For example, a SAW on the square lattice which never takes a west step.)

More specifically, if S is a subset of the directions on a lattice then a walk is S-directed if it only

steps in directions in S. (So again, a SAW on the square lattice which never takes a west step

would be {north, south, east}-directed, or NSE-directed for short.)

Keeping in line with terminology used by other authors, we say a walk is fully directed if, for

every direction X that it steps in, it never steps in the opposite direction −X . (So a NE-directed

walk is fully directed, but a NSE-directed walk which steps both north and south is not.) A

directed walk on the square lattice is generally referred to as a partially directed walk (PDW),

and we will also use this terminology. See Figure 3.1 for examples of fully directed and partially

directed walks.

It is easy to see that fully directed walks on the square lattice are trivially self-avoiding; their

solution is likewise very easily found:

Lemma 3.1. The number fn of fully directed walks on the square lattice of length n is

fn =







1 n = 0

4(2n − 1) n ≥ 1.

2Rechnitzer [100] has proven that the anisotropic generating function of self-avoiding polygons – that is, the bivari-

ate generating function with one variable x corresponding to horizontal edges and another variable y corresponding

to vertical edges – is not D-finite.
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Figure 3.1: A fully directed and partially directed walk on the square lattice. The former is

NE-directed and the latter is NSE-directed.

Proof. The number of NE-directed walks of length n is 2n , since any ordered sequence of north

and east steps forms a unique walk. A fully directed walk can be NE-, SE-, SW- or NW-directed,

and so we multiply by 4, but need to account for walks which step in only one direction (which

have been counted twice), and so finally subtract 4. This argument breaks down for the empty

walk so it is treated separately. �

Corollary 3.2. The mean squared end-to-end distance of fully directed walks of length n ≥ 1 on the

square lattice is
n(2n + n(2n − 2))

2(2n − 1)
∼

n2

2
as n→∞.

Proof. The number of NE-directed walks with k east steps is
�n

k

�

; such a walk has squared end-

to-end distance k2 + (n − k)2. Any fully directed walk can be uniquely obtained by rotating a

NE-directed walk (excluding the E-directed walk) through 0,π/2,π or 3π/2 radians; thus the

mean squared end-to-end distance is

n−1
∑

k=0

4(k2+(n− k)2)

�n
k

�

4(2n − 1)
=

n(2n + n(2n − 2))

2(2n − 1)
. �

It will be seen throughout the remainder of this chapter that results of the precision of

Lemma 3.1 and Corollary 3.2 are frequently unobtainable; instead, we will be forced to settle

for the generating functions of subclasses of SAWs and SAPs and the asymptotic form of their

coefficients.

It will also be evident that the result of Corollary 3.2 is typical of solvable subclasses of SAWs

– the mean squared end-to-end distances of almost all the models considered in this chapter are

known or expected to be O(n2). This is disappointing, as for general SAWs this metric is widely

believed to behave as O(n3/2).3

3There exist solvable models whose mean squared end-to-end distance is not O(n2), namely spiral walks [15, 59]

– see Subsection 3.3.3.
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Lemma 3.3. The generating function of NES-directed walks on the square lattice is

Q(t ) =
∑

n≥0
qn t n =

1+ t

1− 2t − t 2
, (3.2)

and so

qn =
(2+
p

2)(1+
p

2)n − (2−
p

2)(1−
p

2)n

2
p

2
∼

2+
p

2

2
p

2
(1+
p

2)n . (3.3)

Proof. We use this simple example to illustrate the usefulness of generating functions when solv-

ing walk models. NES-directed walks can be divided into two groups: those which have taken

an east step, and those which have not. Those with no east step are either the empty walk or

contain only north or only south steps. Their generating function is thus

1+
2t

1− t
. (3.4)

Walks which do contain an east step must have a last such step; they are thus uniquely deter-

mined by what came before the last east step (which could be any NES-directed walk) and by

what came after the east step (which could be nothing, north steps or south steps). Thus the

generating function of these walks is

Q(t ) · t
�

1+
2t

1− t

�

. (3.5)

These two cases cover all NES-directed walks, thus by adding (3.4) and (3.5) we obtain Q(t ):

Q(t ) = 1+
2t

1− t
+ t
�

1+
2t

1− t

�

Q(t ). (3.6)

Solving (3.6) gives Q(t ), and then the coefficients qn can be obtained with partial fractions. �

Lemma 3.4. The mean squared width (i.e. the distance in the x-direction between first and last

points) of NES-directed walks of length n is asymptotically

n2

4
.

Thus the mean squared end-to-end distance of NES-directed walks is O(n2).

Proof. We again use generating functions, but this time insert a second variable u which tracks

the number of east steps taken by a walk. Then if Q(t ; u) is the new generating function,

Q(t ; u) =
∑

n,k≥0

qn,k t n uk ,

with qn,k being the number of n-step NES-directed walks with k east steps. Note that Q(t , 1) =

Q(t ) as defined in Lemma 3.3. The same methodology as for Lemma 3.3 yields

Q(t ; u) = 1+
2t

1− t
+ t u

�

1+
2t

1− t

�

Q(t ; u), (3.7)
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and we thus get

Q(t ; u) =
1+ t

1− t − t u − t 2u
. (3.8)

Now

Q̃(t ) =
∑

n,k≥0

qn,k k2 t n =
∂

∂ u

�

u
∂ Q(t ; u)

∂ u

�

�

�

�

�

�

u=1

=
t (1+ t )2(1+ t 2)

(1− 2t − t 2)3
(3.9)

is the generating function of NES-directed walks with each walk weighted by the square of its

width. Thus the mean squared width of walks of length n is given by

[t n]Q̃(t )

[t n]Q(t )
.

The asymptotic form of [t n]Q(t ) is given in Lemma 3.3, and the asymptotic form of [t n]Q̃(t )

can likewise be calculated with the basic techniques of analytic combinatorics applied to (3.9).

After simplification the ratio is as it appears in the lemma.

The mean squared end-to-end distance is bounded below by the mean squared width and

bounded above by n2, and thus must be O(n2) (and is in fact Θ(n2)). �

3.2 Prudent walks and polygons on the square lattice

First introduced by Préa [96], prudent walks are a subset of SAWs which never take a step to-

wards any lattice vertex they have already visited. Apart from being intuitive and easily under-

stood, this definition allows for prudent walks to be recursively generated in a systematic (and

fast) manner, and these recursive methods have enabled researchers to compute a number of

generating functions [31, 17].

The reason that we are able to recursively generate prudent walks quickly is that the end-

point of a prudent walk always lies on the boundary of the walk’s bounding box – the smallest

rectangle on the lattice which contains the entire walk.4 So it is always possible to extend a

prudent walk in two or three different directions, and it is easy to track exactly how many valid

extensions are possible after each step.

The bounding box property also allows for a pleasing sub-classification of prudent walks:

• A 1-sided prudent walk must, after every step, end on the east side of its current bounding

box.

• A 2-sided prudent walk must, after every step, end on the east or north side of its current

bounding box. Equivalently, a 2-sided prudent walk is a prudent walk where a west step

cannot be followed by a south step or vice versa.

4Vertices and edges of the walk may lie on the box, just not outside it.
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(a) (b) (c)

Figure 3.2: Prudent walks on the square lattice: (a) 2-sided, (b) 3-sided and (c) 4-sided (unre-

stricted).

• A 3-sided prudent walk must, after every step, end on the east, north or west side of its

current bounding box, and in addition may not step from the east side to the west side of

its box (or vice versa) when the box has width one, unless the endpoint is also on the north

side. Equivalently, 3-sided prudent walks are prudent walks where a south step along the

east side (and not also the west side) cannot be followed by a west step, and a south step

along the west side (and not also the east side) cannot be followed by an east step.

• A 4-sided or unrestricted prudent walk may end on any side of its bounding box.

See Figure 3.2 for examples of 2-, 3- and 4-sided prudent walks.

The decreasing levels of restriction applied to 1-, 2-, 3- and 4-sided prudent walks correspond

to increasing levels of complexity of their solutions. Indeed, to date an exact solution to 4-sided

prudent walks has eluded us completely. (As we will see later, we do have a functional equation

for the generating function.) In the next subsection we will briefly discuss the known solutions

and results for prudent walks.

The connection between prudent walks and prudent polygons is precisely the same as for

SAWs and (rooted) SAPs – a prudent polygon is a prudent walk which ends at a vertex adjacent

to its starting point. We define prudent polygons to be 1-sided, 2-sided, etc. by just applying the

restrictions to the underlying prudent walks.

3.2.1 Prudent walks

1-sided prudent walks

Clearly 1-sided prudent walks are unable to take any west steps. Any self-avoiding walk com-

prised of north, east and south steps will be prudent and will always end on the east side of

its box, so we have that 1-sided prudent walks are exactly NES-directed walks. Hence, their

generating function and asymptotic behaviour is given in Lemma 3.3.

47



2-sided prudent walks

Duchi [31] obtained the solution to 2-sided prudent walks (see also [17]). The recursion she

uses to generate walks is essentially an extension of the method used in the proof of Lemma 3.3.

Instead of considering the last east step taken by a walk, she considers the last inflating step – the

last step which resulted in either the east or north sides of the bounding box being moved. (In

general, an inflating step for a k-sided prudent walk is a step which moves one of the k sides of

interest.) The basic schema is:

• By symmetry (reflection in the line y = x), we can just count walks which end on the east

side of their bounding box and double at the end. (Though we must account for those

which end at the north-east corner of their box, which would be counted twice.)

• Walks ending on the east side of the box which take no inflating steps must be empty or

just a sequence of south steps.

• Walks whose last inflating step was east can be decomposed into a walk which ended on

the east side of its box, followed by the inflating east step, followed by either an unbounded

number of south steps or a bounded number of north steps (the north steps cannot go past

the top of the box).

• Walks whose last inflating step was north can be decomposed into a walk which ended on

the north side of its box, followed by the inflating north step, followed by exactly enough

east steps to take the endpoint to the north-east corner of the box.

So if we define r (2)
n,k

as the number of 2-sided prudent walks of length n which end on the east

side of their box with distance k between the endpoint and the north-east corner of the box (see

Figure 3.3 for an illustration), we can consider the bivariate generating function

R(2)(t ; u) =
∑

n,k≥0

r (2)
n,k

t n uk .

We will refer to u as a catalytic variable. From an enumerative point of view, we don’t actually

care about the measurement that u is tracking. We need u only because the recursion depends on

knowing the distance between the endpoint of a walk and the north-east corner of its bounding

box. In the end, after we solve R(2)(t ; u), we will simply set u = 1; this is equivalent to just

summing over all the values of k for each n.

Duchi’s recursion can be encoded in a functional equation in R(2)(t ; u):

Lemma 3.5 (Duchi [31], Bousquet-Mélou [17]). The generating function R(2)(t ; u) satisfies the

functional equation

R(2)(t ; u) =
1

1− t u
+ t R(2)(t ; t )+

t 2u

1− t u
R(2)(t ; u)+

t u

u − t
R(2)(t ; u)−

t 2

u − t
R(2)(t ; t ). (3.10)
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k

Figure 3.3: A 2-sided prudent walk with the distance k measured by the catalytic variable u

indicated, as defined by Duchi and Bousquet-Mélou.

Upon rearrangement (3.10) becomes
 

1−
t u(1− t 2)

(1− t u)(u − t )

!

R(2)(t ; u) =
1

1− t u
+

t (u − 2t )

u − t
R(2)(t ; t ). (3.11)

This equation can now be solved via the “kernel method”, a technique for solving multivariate

functional equations whose discovery is generally credited to Knuth [80]. (See also [5, 99].)

In essence, the idea is to find a value for one of the variables (in our case, u) which will cancel

the coefficient of one or more of the unknown terms in the equation. The coefficient being

cancelled is called the kernel. Here the kernel will be

K(t ; u) = 1−
t u(1− t 2)

(1− t u)(u − t )
. (3.12)

There are two solutions to K(t ; u) = 0 in the variable u:

U± =
1− t + t 2+ t 3±

Æ

(1− t 4)(1− 2t − t 2)

2t
. (3.13)

Only one of these roots is a power series in t , namely U−. Substituting u =U− into (3.11) yields

R(2)(t ; t ) =
U−− t

t (1− t U−)(2t −U−)
(3.14)

= 1+ 2t + 5t 2+ 12t 3+ 29t 4+O(t 5).

This finally enables us to solve for the overall generating function R(2)(t ; u):

Lemma 3.6 (Duchi [31], Bousquet-Mélou [17]). The generating function for 2-sided prudent

walks which end on the right side of their bounding box is

R(2)(t ; u) =K(t ; u)−1
�

1

1− t u
+

t (u − 2t )

u − t
·

U−− t

t (1− t U−)(2t −U−)

�

(3.15)
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where U− is as defined in (3.13). The length generating function for 2-sided prudent walks is then

P (2)(t ) = 2R(2)(t ; 1)−R(2)(t ; 0) =
1

1− 2t − 2t 2+ 2t 3






1+ t − t 3+ t (1− t )

s

1− t 4

1− 2t − t 2







= 1+ 4t + 10t 2+ 26t 3+ 66t 4+O(t 5).

(3.16)

It is clear by inspection that the generating function P (2)(t ) is algebraic. From this generating

function, Bousquet-Mélou [17] has extracted the asymptotic behaviour of p (2)n , the number of

2-sided prudent walks of length n.

Corollary 3.7 (Bousquet-Mélou [17]). The generating function of 2-sided prudent walks has a

unique dominant singularity at ρ≈ 0.403, a root of 1−2ρ−2ρ2+2ρ3. The singularity is a simple

pole, and so the number p (2)n of 2-sided prudent SAWs of length n satisfies

p (2)n ∼ κτ
n

with

τ = ρ−1 ≈ 2.48 and κ=
ρ(3ρ− 1)

(3ρ+ 1)(5ρ− 2)
≈ 2.51.

Moreover, the mean sum 〈Sn〉 of the coordinates of the endpoints of a 2-sided prudent walk of length

n is asymptotically 〈Sn〉 ∼M n, where M = (ρ+ 1)/(3ρ+ 1)≈ 0.63.

The asymptotic behaviour of p (2)n is easily extracted from the generating function (3.16).

Bousquet-Mélou obtains the result for the sum of the endpoint coordinates by adding a new

variable to the generating function which tracks this measurement, similarly to the method

demonstrated in Lemma 3.4.

3-sided prudent walks

Bousquet-Mélou [17] solves the generating function of 3-sided prudent walks in a similar man-

ner to the 2-sided case. She defines two generating functions – one counts walks which end

on the east side of their box, and the other counts those which end on the north side of their

box. Each generating function makes use of two catalytic variables. Just as in the 2-sided case,

walks are categorised according to the direction of their last inflating step, which could be east,

north or west, and then recursively generated. These recursions lead to a pair of functional equa-

tions (encoding the method for generating walks which end on the east and north sides of their

boxes respectively), which, after some manipulation, can be solved by a variation of the kernel

method sometimes known as the iterated kernel method. (See also [116]. Later in this chapter

and in Chapter 4 we will use the iterated kernel method to solve some related models, and will

give a more detailed explanation.)
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Lemma 3.8 (Bousquet-Mélou [17]). The generating function of 3-sided prudent walks is given by

P (3)(t ) =
∑

n≥0
p (3)n t n =

1

1− 2t − t 2

 

2t 2qT (t )+
(1+ t )(2− t − t 2q)

1− t q

!

−
1

1− t
, (3.17)

where

T (t ) =
∑

k≥0

(−1)k
∏k−1

i=0

�

t
1−t q −U (q i+1)

�

∏k
i=0

�

t q
q−t −U (q i )

�

 

1+
U (qk )− t

t (1− t U (qk ))
+

U (qk+1)− t

t (1− t U (qk+1))

!

,

U (w) =U (t ; w) =
1− t w + t 2+ t 3w −

Æ

(1− t 2)(1+ t − t w + t 2w)(1− t − t w − t 2w)

2t
,

and q =U (1) =U− as per (3.13).

Similarly to Corollary 3.7, Bousquet-Mélou is able to apply the techniques of analytic com-

binatorics to determine the asymptotic behaviour of p (3)n and extract information about the

limiting shape of 3-sided prudent walks.

Corollary 3.9 (Bousquet-Mélou [17]). The generating function of 3-sided prudent walks has a

unique dominant singularity at ρ ≈ 0.403, the same singularity as for 2-sided prudent walks. The

singularity is again a simple pole. Thus the number of 3-sided prudent walks of length n satisfies

p (3)n ∼ κτ
n

with τ = ρ−1 ≈ 2.48 and κ a positive constant.

The mean width 〈Wn〉 (i.e. width of the bounding box) of 3-sided prudent walks of length n is

asymptotically 〈Wn〉 ∼M n, where M = (1+ρ)/(2(1+ 3ρ))≈ 0.31.

Bousquet-Mélou also shows that the generating function P (3)(t ) has an infinite number of

singularities in the complex plane, and thus is not D-finite.

4-sided prudent walks

The progression we have just observed, from 1-sided prudent walks to 2- and then 3-sided, seems

to suggest we should be able to follow the same methodology to obtain the solution for 4-sided

prudent walks. But while Duchi [31] and Bousquet-Mélou [17] were able to obtain functional

equations for this class of walks, nobody has yet been able to solve these equations and find the

generating function.

We present here the functional equation as it is written by Bousquet-Mélou. By symmetry,

we only need to count walks ending on the north side of their box. The last inflating step for

these walks could be north, east or west.
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ij

k

Figure 3.4: A 4-sided prudent walk with the distances i , j , k measured by the catalytic variables

u, v, w indicated, as defined by Bousquet-Mélou.

Lemma 3.10 (Bousquet-Mélou [17]). Define the generating function

T (t ; u, v, w) =
∑

n,i , j ,k≥0

tn,i , j ,k t n u i v j wk ,

where tn,i , j ,k is the number of 4-sided prudent walks of length n which end on the north side of their

bounding box, with distance i (resp. j ) from the endpoint to the north-east (resp. north-west) corner

of the box and with bounding box of height k. (See Figure 3.4 for an illustration.) Then T (t ; u, v, w)

satisfies
 

1−
t uvw(1− t 2)

(u − t v)(v − t u)

!

T (t ; u, v, w) = 1+ t uT (t ; w, t w, u)+ t vT (t ; w, t w, v)

−
t 2vw

u − t v
T (t ; v, t v, w)−

t 2uw

v − t u
T (t ; u, t u, w).

(3.18)

The generating function for 4-sided prudent walks is then

P (4)(t ) =
∑

n≥0
p (4)n t n = 1+ 4T (t ; 1, 1,1)− 4T (t ; 0, 1,1). (3.19)

The problem with solving this equation seems to be that it involves three catalytic variables.

The mechanisms used for solving the 2- and 3-sided cases – the kernel method and its variant

the iterated kernel method – can be used to solve functional equations involving generating

functions with more than two catalytic variables, but usually only when there is a high degree

of symmetry between the variables.5 Here, it seems, things are simply too complicated. (This

problem will come up again later, when we consider prudent polygons and some other related

models.)

Dethridge and Guttmann [27] produced a long series (over 400 terms) of values for p (4)n by

iterating (3.18). They analysed this series and predicted that the dominant singularity is again a

5Bousquet-Mélou [18] has even used the kernel method to solve generating functions with an arbitrary number

of catalytic variables, when considering the problem of permutations avoiding long ascending subsequences.
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Figure 3.5: Examples of 2-sided (in this case, a bargraph), 3-sided and 4-sided prudent polygons.

simple pole at ρ≈ 0.403, and so conjecture that the asymptotic form of p (4)n is

p (4)n ∼ κτ
n

with τ = ρ−1 ≈ 2.48 and κ ≈ 16.12. They also predicted that the generating function P (4)(t ) is

not D-finite.

3.2.2 Prudent polygons by perimeter

From prudent walks we now move on to prudent polygons. Recall that a k-sided prudent poly-

gon is simply a k-sided prudent walk which ends at a point on the lattice adjacent to the starting

point (i.e. the origin).6 See Figure 3.5 for examples of 2-, 3- and 4-sided prudent polygons. In

this subsection we summarise the work, primarily by Schwerdtfeger [105], on enumeration of

prudent polygons by perimeter. In the next subsection we will consider enumeration by area,

and find that 3-sided prudent polygons in particular display some interesting and unexpected

behaviour. Since SAPs on the square lattice always have an even perimeter, we will follow Schw-

erdtfeger’s lead and count them by half-perimeter.

1-sided prudent polygons

The only vertex that a 1-sided prudent polygon can end at is (1,0). Thus, for any n ≥ 2, there

are only two 1-sided prudent polygons with half-perimeter n: the one which takes n− 1 north

steps followed by an east step and then n − 1 south steps, and its reflection in the x-axis. The

half-perimeter generating function of such objects is the rather uninteresting function

P P (1)(t ) =
2t 2

1− t
. (3.20)

2-sided prudent polygons

A 2-sided prudent polygon can end at (1,0) or (0,1), and by reflective symmetry in the line y = x

the numbers of polygons ending at each vertex are equal. Thus it suffices to count the polygons

ending at (0,1) and multiply by two at the end. Such polygons can be divided into two classes:

6Of course we exclude a single step from being a polygon.
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• If a polygon with half-perimeter n starts with a west step, it is forced to take n − 1 west

steps, a north step, then n− 1 east steps. (We call these degenerate polygons.)

• If a polygon starts with a south or east step, it will continue as a NES-directed walk which

stays strictly below the line y = 1, until it steps up to this line and must then step west to

the end point.

The degenerate polygons have generating function t 2/(1− t ). Polygons in the second class

are also known as bargraphs, and their generating function has long been known [97]. As demon-

strated by Schwerdtfeger, they can be constructed recursively by adding columns to the right-

most side of existing bargraphs. A single catalytic variable is required – it keeps track of the

height of the rightmost column of a polygon. The resulting functional equation can be solved

by the kernel method, analogously to the technique used in Lemma 3.5.

Lemma 3.11 (Schwerdtfeger [105]). The half-perimeter generating function of 2-sided prudent

polygons is equal to

P P (2)(t ) =
1

t

 

1− 3t + t 2+ 3t 3

1− t
−
Æ

(1− t )(1− 3t − t 2− t 3)

!

. (3.21)

The dominant singularity of P P (2)(t ) is a square-root singularity at t = σ ≈ 0.296, a root of 1−
3σ−σ2−σ3 = 0. Thus the number of 2-sided prudent polygons of half-perimeter n is asymptotically

p p (2)n ∼ κλ
n n−3/2, (3.22)

where λ= σ−1 ≈ 3.38 and κ≈ 0.855.

3-sided prudent polygons

A 3-sided prudent polygon can end at (−1,0), (0,1) or (1,0). By symmetry (reflection in the

y-axis), we only need to count those ending at (−1,0) and those ending at (0,1) in a counter-

clockwise direction. (By this we mean if we inserted an extra step to join the first and last

vertices of the walk, the polygon will have been traversed in a counter-clockwise direction.) The

latter are just the bargraphs discussed in the solution to 2-sided polygons. The polygons ending

at (−1,0) in a clockwise direction are degenerate, and consist only of a sequence of south steps,

then a west step, then north steps.

The polygons ending at (−1,0) in a counter-clockwise direction are the interesting class.

Here, Schwerdtfeger first constructs all polygons which do not step above the line y = 1: these

are bargraphs whose leftmost column always has height one. Then given a polygon we can

construct a new one in two ways: by either adding a row to the top (whose left edge aligns with

the left side of the existing polygon) which is shorter than the width of the current polygon,

or by adding a row longer than the width of the exisiting polygon and possibly appending a
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bargraph to the right edge of this row. This construction requires two catalytic variables, and so

the resulting functional equation is solved in a similar way to 3-sided prudent walks.

Lemma 3.12 (Schwerdtfeger [105]). The half-perimeter generating function of 3-sided prudent

polygons ending at (−1,0) in a counter-clockwise direction is

R(t ) =
∑

k≥0

L(t kQ2k )
k−1
∏

j=0

K(t j Q2 j ), (3.23)

where

Q ≡Q(t ) =
1+ t 2−

Æ

(1− t )(1− 3t − t 2− t 3)

2t
,

L(w)≡ L(t ; w) =
(1+ t 2− (1− 2t + 2t 2+ t 4)Q)(B(t ;Qw)+ t )w

1− t (1+ t )Q − (t (1− t − t 3)Q + t 2)(B(t ;Qw)+ t )w
,

K(w)≡K(t ; w) =
(1− t )Q − 1− ((1− t + t 2)Q − 1)(B(t ;Qw)+ t )w

1− t (1+ t )Q − (t (1− t − t 3)Q + t 2)(B(t ;Qw)+ t )w
,

and B(t ; u) is the generating function of bargraphs with t conjugate to half-perimeter and u conjugate

to width:

B(t ; u) =
1− t − t u(1+ t )−

Æ

t 2u2(1− t )2− 2t u(1− t 2)+ (1− t )2

2t u
.

The half-perimeter generating function of 3-sided prudent polygons is then

P P (3)(t ) = 2

 

t 2

1− t
+B(t ; 1)+R(t )

!

. (3.24)

The generating function P P (3)(t ) is not D-finite. The dominant singularity of this generating func-

tion is a square root singularity at t = η ≈ 0.244, a root of 4− 17η+ 4η2 − 6η3 − η5 = 0. So the

number of 3-sided prudent polygons with half-perimeter n satisfies

p p (3)n ∼ κω
n n−3/2 (3.25)

with ω = η−1 ≈ 4.10 and κ a positive constant.

4-sided prudent polygons

In a preprint of [105], Schwerdtfeger wrote down functional equations for 4-sided prudent poly-

gons. Like the case of 4-sided prudent walks, the generating functions use three catalytic vari-

ables, and so at this stage no solution is known for this class. Here we modify Schwerdtfeger’s

definitions to make the constructions slightly more aesthetically pleasing, though ultimately the

equations are no easier to solve.

Unrestricted prudent polygons can end at any of the four vertices adjacent to the origin, and

can do so in either a clockwise or counter-clockwise direction. By symmetry then it suffices to

count only those polygons ending at (−1,0) in a counter-clockwise direction. We partition these

polygons into three subclassesX ,Y and Z :
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• Polygons in X are those for which removing the top row does not change the width of

the polygon, result in two or more disconnected pieces, or remove the vertex (−1,0) from

the polygon. The generating function is

X (t ; u, v, w) =
∑

n,i , j ,k≥0

xn,i , j ,k t n u i v j wk ,

where xn,i , j ,k is the number of polygons inX with half-perimeter n, top row of width i ,

total width i + j , and height k.

• Polygons in Y are the unit square plus those polygons not inX for which removing the

rightmost column (which will necessarily be a single connected piece) does not change

the height of the polygon nor result in two or more disconnected pieces. The generating

function is

Y (t ; u, v, w) =
∑

n,i , j ,k≥0

yn,i , j ,k t n u i v j wk ,

where yn,i , j ,k is the number of polygons in Y with half-perimeter n, rightmost column

of height i , total height i + j , and width k.

• Polygons in Z are those not inX or Y . The generating function is

Z(t ; u, v, w) =
∑

n,i , j ,k≥0

zn,i , j ,k t n u i v j wk ,

where zn,i , j ,k is the number of polygons inZ with half-perimeter n, bottom row of width

i , total width i + j + 1, and height k.

Then the recursive construction works as follows (more details will be given in the proof of

Proposition 3.18, when we consider the enumeration of 4-sided prudent polygons by area):

• A polygon in X is constructed by taking any polygon of width x and adding a row of

width ≤ x to the top, with the leftmost edges aligned.

• A polygon in Y is constructed by:

– Taking a polygon in Y or Z of height x and adding a new column of height ≤ x to

the right, with the top edges aligned; or

– Taking any polygon of width x and adding a row to the top of width x + 1, with

leftmost edges aligned.

• A polygon in Z is constructed by:

– Taking a polygon inZ of width x+1 and adding a row of width≤ x to the bottom,

with the rightmost edges aligned; or
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– Taking a polygon in Y or Z of height x and adding new column of height x + 1 to

the right, with the top edges aligned.

These constructions can then be encoded as funtional equations in X ,Y and Z .

Lemma 3.13 (Schwerdtfeger [105]). The generating functions X (t ; u, v, w),Y (t ; u, v, w) and

Z(t ; u, v, w) satisfy

X (t ; u, v, w) =
t uw

u − v
[X (t ; u, v, w)−X (t ; v, v, w)]+

t 2uw

v − t u
[X (t ; u, v, w)−X (t ; u, t u, w)]

+
t uw

u − v
[Y (t ; w, w, u)−Y (t ; w, w, v)]+

t uw

u − v
[uZ(t ; u, u, w)− vZ(t ; v, v, w)],

(3.26)

Y (t ; u, v, w) = t 2uw +
t uw

u − v
[Y (t ; u, v, w)−Y (t ; v, v, w)]

+
t 2uw

v − t u
[Y (t ; u, v, w)−Y (t ; u, t u, w)]+

t uw2

u − v
[Z(t ; w, w, u)−Z(t ; w, w, v)]

+t 2uwX (t ; w, t w, v)+ t 2uwY (t ; v, v, w)+ t 2uw2Z(t ; w, w, v),

(3.27)

Z(t ; u, v, w) =
t uw

u − v
[Z(t ; u, v, w)−Z(t ; v, v, w)]+

t 2uw

v − t u
[Z(t ; u, v, w)−Z(t ; u, t u, w)]

+
t 2uw

v
Y (t ; w, t w, v)+ t 2uwZ(t ; v, v, w).

(3.28)

Note that in the end we can obtain the overall generating function by taking

P P (4)(t ) = 8[X (t ; 1, 1,1)+Y (t ; 1, 1,1)+Z(t ; 1, 1,1)]. (3.29)

Garoni et al. [47] have generated some 500 terms in the sequence p p (4)n , and based on a

number of different numerical analyses, estimate that

p p (4)n ∼ κχ
n nα−3

where χ ≈ 4.415 and α ≈ −1.5. While these estimates are very rough, two facts do seem clear:

firstly, the exponential growth rate changes from 2- to 3- to 4-sided prudent polygons, unlike

prudent walks where it appears to stay at the same value. Secondly, the dominant singularity for

4-sided prudent polygons is almost certainly not a square root, unlike the 2- and 3-sided cases. It

would be nice to have an intuitive argument as to why this is the case.
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3.2.3 Prudent polygons by area: Generating functions

Our study of prudent walks and polygons on the square lattice finally turns to the enumeration

of polygons by area. In this subsection, we construct functional equations for the four subclasses

of prudent polygons, and in the cases of 1-, 2- and 3-sided polygons we solve these functional

equations and write down their generating functions. For 4-sided prudent polygons we are

unable to solve the functional equations.

In the next subsection we will focus on the generating function for 3-sided prudent poly-

gons. It has a form which is reminiscent of, but ultimately quite different from, the generating

functions of 3-sided prudent walks and 3-sided prudent polygons by perimeter. The analysis

of its singularity structure is quite involved, and the asymptotic form of its coefficients is quite

unlike any other solvable model considered in this thesis, or indeed any other polygon model

known to the author.

The constructions we use here are essentially the same as Schwerdtfeger’s [105]; the resulting

functional equations and their solutions, however, turn out to be quite different. We will denote

the area generating function for k-sided prudent polygons by

PA(k)(q) =
∑

n≥1
pa(k)n qn ,

where pa(k)n is the number of k-sided prudent polygons of area n.

1-sided prudent polygons

As was explained in the last subsection, a 1-sided prudent polygon is just a single column of cells

above or below the x-axis. There are then exactly two polygons of area n for each n ≥ 1, so

PA(1)(q) =
2q

1− q
. (3.30)

2-sided prudent polygons

The non-trivial 2-sided prudent polygons can be constructed from bargraphs. Let B(q) =
∑

n≥1 bn qn be the area generating function for these objects. The area generating function for

bargraphs, B(q), is

B(q) =
q

1− 2q

and so bn = 2n−1 for n ≥ 1.

Proposition 3.14. The area generating function for 2-sided prudent polygons is

PA(2)(q) =
2q

1− 2q
+

2q

1− q
,

and so the number of such polygons is pa(2)n = 2n + 2 for n ≥ 1.
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Proof. A 2-sided prudent polygon must end at either (0,1) or (1,0). Reflection in the line y = x

will not invalidate the 2-sided property, so it is sufficient to enumerate those polygons ending at

(1,0) and then multiply the result by two.

The underlying 2-sided prudent walk cannot step above the line y = 1, nor to any point

(x, y) where x, y < 0. So any polygon beginning with a west step must be a single row of cells to

the left of the y-axis. The generating functions for these polygons is then q
1−q .

A polygon starting with a south or east step must remain on the east side of its box until it

reaches the line y = 1, at which point it has no choice but to take west steps back to the y-axis.

It is thus a bargraph, with generating function B(q) = q
1−2q .

Adding these two possibilities together and doubling gives the result. �

3-sided prudent polygons

When constructing 3-sided prudent polygons, we will use a single catalytic variable which mea-

sures width. To do so we will need to measure bargraphs by width. Let

B(q ; u) =
∑

n,i≥1

bn,i qn u i

be the area-width generating function for bargraphs (so bn,i is the number of bargraphs with

area n and width i ).

The area-width generating function for bargraphs, B(q ; u), satisfies the equation

B(q ; u) =
q u

1− q
+

q u

1− q
B(q ; u), (3.31)

which is obtained by successively adding columns. Accordingly, by solving the functional equa-

tion, we obtain

B(q ; u) =
q u

1− q − q u

and so bn,i =
�n−1

i−1

�

for n, i ≥ 1. (Clearly, bn,i counts compositions of n into i summands.)

Let

W (q ; u) =
∑

n,i≥1

wn,i qn u i

be the area-width generating function for 3-sided prudent polygons which end at (−1,0) in a

counter-clockwise direction. As mentioned in the previous subsection, this is the most com-

plex type of 3-sided prudent polygon; everything else is either a reflection of this or can be

constructed from something simpler.

Lemma 3.15. The area-width generating function for 3-sided prudent polygons ending at (−1,0) in

a counter-clockwise direction, W (q ; u), satisfies the functional equation

W (q ; u) = q u(1+B(q ; u))+
q

1− q
(W (q ; u)−W (q ; q u))+ q u(1+B(q ; u))W (q ; q u). (3.32)
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Figure 3.6: The decomposition used to construct 3-sided prudent polygons.

Proof. The underlying prudent walk cannot step to any point (x, y) with x, y < 0, nor to any

point with x < −1. It must approach the final vertex (−1,0) from above. So the only time the

endpoint can be on the west side of the box and not the north or south is when the walk is

stepping south along the line x = −1. So prior to reaching the line x = −1, the walk must in

fact be 2-sided. Note that the north-west corner of the box must be a part of of the polygon.

If the walk stays on or below the line y = 1, then (as has been seen in Proposition 3.14), it

either reaches the point (0,1)with a single north step, or by forming a bargraph. This must then

be followed by a west step to (−1,1), then a south step. This will form either a single square or

a bargraph with a single square attached to the north-west corner, giving the first term on the

right-hand side of (3.32). (These objects are represented by the left-hand side of Figure 3.6.)

Since the north-west corner of the box of any of these polygons is part of the polygon, it is

valid to add a row of cells to the top of an existing polygon (so that the west sides line up). This

can be done to any polygon. If the new row is not longer than the width of the existing polygon

we obtain the term

∑

n≥1

∑

i≥1

wn,i qn u i ·
i
∑

k=1

qk = q
∑

n≥1

∑

i≥1

wn,i qn u i ·
1− q i

1− q
,

giving the second term in the right-hand side of (3.32). (These objects are represented by the

polygon in the centre of Figure 3.6.)

Note. For the remainder of this subsection, we will omit unwieldy double or triple sums like

the one above, and instead give recursive relations only in terms of the generating functions.

Instead, the new row may be longer than the width of the existing polygon. In this case,

as the walk steps east along this new row, it will reach a point at which there are no occupied

vertices south of its position, and it will hence be able to step south in a prudent fashion. It must

then remain on the east side of the box until reaching the north side, at which point it steps west

to x =−1 and then south to the endpoint. This effectively means we have added a row of length

equal to the width +1, and then (possibly) an arbitrary bargraph. So we obtain

q uW (q ; q u)(1+B(q ; u))

which gives the final term in the right-hand side of (3.32). See the right side of Figure 3.6 for an

illustration. �
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Lemma 3.16. The area-width generating function for 3-sided prudent polygons ending at (−1,0) in

a counter-clockwise direction is

W (q ; u) =
∞
∑

m=0
F (q ; q m u)

m−1
∏

k=0

G(q ; qk u),

where

F (q ; u) =
q u(1− q)2

(1− 2q)(1− q − q u)
, G(q ; u) =

−q(1− q − u + q u − q2u)

(1− 2q)(1− q − q u)
.

Proof. Substituting B(q ; u) = q u
1−q−q u into (3.32) and rearranging gives

W (q ; u) = F (q ; u)+G(q ; u)W (q ; q u). (3.33)

Substituting u 7→ uq gives

W (q ; q u) = F (q ; q u)+G(q ; q u)W (q ; q2u) (3.34)

and combining these yields

W (q ; u) = F (q ; u)+ F (q ; q u)G(q ; u)+G(q ; u)G(q ; q u)W (q ; q2u). (3.35)

Repeating for u 7→ q2u, q3u, . . . , qM u will give

W (q ; u) =
M
∑

m=0
F (q ; q m u)

m−1
∏

k=0

G(q ; qk u)+
M
∏

m=0
G(q ; q m u)W (q ; qM+1u). (3.36)

We now seek to take M →∞. To obtain the result stated in the lemma, it is necessary to

show that
M
∑

m=0
F (q ; q m u)

m−1
∏

k=0

G(q ; qk u)

converges, and
M
∏

m=0
G(q ; q m u)W (q ; qM+1u)→ 0

as M →∞ (both considered as power series in q and u).

Both F and G are bivariate power series in q and u. We have that

F (q ; u) = q u + q2(u + u2)+ q3(2u + 2u2+ u3)+O(q4)

G(q ; u) = q(−1+ u)+ q2(−2+ u + u2)+ q3(−4+ 2u + 2u2+ u3)+O(q4)

It follows that F (q ; q m u) =O(q m+1) and G(q ; qk u) =O(q) for all m, k ≥ 0. So then

F (q ; q m u)
m−1
∏

k=0

G(q ; qk u) =O(q2m+1)
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So considered as a power series in q and u, the first term in the right-hand side of (3.36) does

converge to a fixed power series as M →∞.

By the same argument, we see that

M
∏

m=0
G(q ; q m u)→ 0

as M →∞. So it suffices to show that W (q ; qM+1u) converges to a fixed power series. But now

every term in the series W (q ; u) has at least one factor of u (since every polygon has positive

width), so it immediately follows that W (q ; qM+1u)→ 0 as M →∞.

So both terms in (3.36) behave as required as M →∞, and the result follows. �

Theorem 3.17. The area generating function for 3-sided prudent polygons is

PA(3)(q) =
−2q3(1− q)2

(1− 2q)2

∞
∑

m=1

(−1)m q2m

(1− 2q)m(1− q − q m+1)

m−1
∏

k=1

1− q − qk + qk+1− qk+2

1− q − qk+1

+
2q(3− 10q + 9q2− q3)

(1− 2q)2(1− q)

= 6q + 10q2+ 20q3+ 42q4+ 92q5+ 204q6+ 454q7+ 1010q8+ · · ·

Proof. A 3-sided prudent polygon must end at (−1,0), (0,1) or (1,0), in either a clockwise or

counter-clockwise direction. Setting u = 1 in W (q , u) gives the area generating function

W (q ; 1) =
−q3(1− q)2

(1− 2q)2

∞
∑

m=1

(−1)m q2m

(1− 2q)m(1− q − q m+1)

m−1
∏

k=1

1− q − qk + qk+1− qk+2

1− q − qk+1

+
q(1− q)2

(1− 2q)2
. (3.37)

A clockwise polygon ending at (−1,0) can only be a single column, which has generating

function
q

1− q
. (3.38)

A counter-clockwise polygon ending at (0,1) cannot step left of the y-axis or above the line

y = 1. While it is below this line, it must remain on the east side of its box, and upon reaching

the line y = 1, it must step west to the y-axis. It must therefore be a bargraph, with generating

function
q

1− 2q
. (3.39)

A reflection in the y-axis converts a polygon ending at (−1,0) to one ending at (1,0) in the

opposite direction, and reverses the direction of a polygon ending at (0,1). So adding together

and doubling (3.37), (3.38) and (3.39) will cover all possibilities, and gives the stated result. �

We will postpone the singularity analysis of PA(3)(q) until Subsection 3.2.4, as it is quite

involved and makes use of a number of results and techniques not found elsewhere in this thesis.
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X :
X ∪Y ∪Z

Y : Y ∪Z

X ∪Y ∪Z

Z :
Z

Y ∪Z

Figure 3.7: The decompositions used to construct 4-sided prudent polygons in X ,Y ,Z (from

top to bottom). The shaded sections are the rows or columns being added, and the labels indicate

which classes can accept such additions.

4-sided prudent polygons

As discussed in the last section, 4-sided prudent polygons have an 8-fold symmetry, and thus we

only need to enumerate those ending at (−1,0) in a counter-clockwise direction. We partition

these polygons in the same way as in the last subsection – into classes X ,Y and Z – but use

different catalytic variables. Here, we have the generating functions

X (q ; u, v) =
∑

n,i , j≥1

xn,i , j q
n u i v j

Y (q ; u, v) =
∑

n,i , j≥1

yn,i , j q
n u i v j

Z(q ; u, v) =
∑

n,i , j≥1

zn,i , j q
n u i v j

where

• xn,i , j is the number of polygons inX with area n, width i and height j ,

• yn,i , j is the number of polygons in Y with area n, height i and width j , and

• zn,i , j is the number of polygons in Z with area n, width i + 1 and height j .
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Proposition 3.18. The generating functions X (q ; u, v), Y (q ; u, v) and Z(q ; u, v) satisfy the func-

tional equations

X (q ; u, v) =
qv

1− q
[X (q ; u, v)−X (q ; q u, v)]+

qv

1− q
[Y (q ; v, u)−Y (q ; v, q u)]

+
q uv

1− q
[Z(q ; u, v)− qZ(q ; q u, v)],

(3.40)

Y (q ; u, v) = q uv +
qv

1− q
[Y (q ; u, v)−Y (q ; q u, v)]+

qv2

1− q
[Z(q ; v, u)−Z(q ; v, q u)]

+q uv[X (q ; qv, u)+Y (q ; u, qv)+ qvZ(q ; qv, u)],

(3.41)

Z(q ; u, v) =
qv

1− q
[Z(q ; u, v)−Z(q ; q u, v)]+ qvY (q ; qv, u)+ q uvZ(q ; u, qv). (3.42)

The generating function for 4-sided prudent polygons is then given by

PA(4)(q) = 8[X (q ; 1, 1)+Y (q ; 1, 1)+Z(q ; 1, 1)]

= 8q + 24q2+ 80q3+ 248q4+ 736q6+ 2120q7+ 5960q8+ 16464q9+ · · ·

Proof. The construction is the same as for Lemma 3.13, but we explain it in more detail here. In

Figure 3.7 we provide an illustration of the construction for the three different classes.

As with the 3-sided polygons in Lemma 3.15, the walk cannot visit any point (x, y) with

x, y < 0 or with x < −1. The walk must approach (−1,0) from above, and must do so im-

mediately upon reaching the line x = −1. So every polygon contains the north-west corner of

its box. As in the 3-sided case, this leads to a construction involving adding rows to the top of

existing polygons.

By definition, a polygon inX of width i can be constructed by adding a row of length ≤ i

to the top of any polygon of width i . Adding a row to a polygon inX gives

∑

n≥1

∑

i≥1

∑

j≥1

xn,i , j q
n u i v j · v

i
∑

k=1

qk = qv
∑

n≥1

∑

i≥1

∑

j≥1

xn,i , j q
n u i v j ·

1− q i

1− q
,

which is the first term in the right-hand side of (3.40). Performing similar operations for poly-

gons in Y and Z gives the rest of (3.40).

Note. Again, for the remainder of this subsection we give recursive relations purely in terms of

the generating functions.

Polygons not in X must also contain the north-east corner of their box. This leads to

another construction involving adding columns to the right-hand side of existing polygons. To

obtain a polygon in Y of height i , a new column of height ≤ i should be added to a polygon of

height i which contains the north-east corner of its box. So adding a column to a Y polygon

gives
qv

1− q
Y (q ; u, v)−

qv

1− q
Y (q ; q u, v)
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which is the second term in the right-hand side of (3.41). Performing a similar operation for Z
polygons gives the third term in (3.41).

Adding a new column to a polygon in X containing its north-east corner can be viewed

as adding a sequence of rows on top of one another, and so if the new column has height ≥ 2

then the resulting polygon is actually in X . If the new column has height one, however, the

resulting polygon is in Y . Isolating those polygons inX which contain their north-east corner

is difficult; however, we can perform an equivalent construction by adding a row of length i +1

to any polygon of width i . Doing so to a polygon inX gives

q uvX (q ; qv, u)

and combining this with the same for Y and Z gives the fourth term in (3.41). The q uv term

is the unit square.

Polygons in Z also contain the south-east corner of their box. In a similar fashion to the

constructions for Y and Z , we can add a new row to the bottom of a polygon containing its

south-east corner. To do so to a polygon in Z of width i + 1 (remember u measures width −1)

requires a new row of width ≤ i , so we obtain

qv

1− q
Z(q ; u, v)−

qv

1− q
Z(q ; q u, v)

which is the first term in the right-hand side of (3.42).

Adding a new row to the bottom of something inX (containing its south-east corner) will

give back something inX , which will have been constructed by an alternate method described

above. Adding a new row of length ≥ 2 to a polygon in Y will result in another polygon in Y ,

which will also be constructible via alternate means. So we are left only with the possibility of

adding a row of length one to the bottom of a polygon in Y . This is analogous to the above

description of adding a column of height one to the right of a polygon in X ; we now proceed

by adding a column of height i + 1 to a polygon in Y orZ of height i . Doing so gives the final

two terms in (3.42). �

We are unable to solve the functional equations for X ,Y and Z , and so we turn to series anal-

ysis. Based on a series of some 800 terms, we strongly conjecture that the exponential growth

rate for pa(4)n is exactly 2, which matches that of 2- and 3-sided prudent polygons (see Subsec-

tion 3.2.4 for more details on the 3-sided case). With this assumption in hand, we then estimate

that

pa(4)n ∼ α2n nβ

where 2.58 < β < 2.61 and α is a positive constant. (In light of the results of the next section,

we will eventually revise this estimate – see Table 3.2 and the preceding discussion.)
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3.2.4 3-sided prudent polygons by area: Analysis and asymptotics

For most lattice object problems, finding and solving the functional equation(s) is the difficult

part. Once a generating function has been found, the dominant singularity is often quite ob-

vious, and so the asymptotic form of the coefficients can be easily described. The problem of

3-sided prudent polygons, however, turns out to be rather the opposite. The functional equation

(3.32) was not terribly difficult to obtain, and its solution is relatively simple – it only comprises

a sum of products of rational functions of q .

The asymptotic behaviour of this model, on the other hand, is considerably more complex

than any model we have seen before. The dominant singularity at q = 1/2 is not even apparent

from the representation of Theorem 3.17. As we shall see, there is in fact an accumulation

of poles of the generating function7 PA(q) towards q = 1/2. Accordingly, the nature of the

dominant singularity at q = 1/2 is rather unusual: a singular expansion as q approaches 1/2

can be determined, but it involves periodic fluctuations, a strong divergence from the standard

simple type Zα(logZ)β, where Z := 1−z/ρ, with ρ (here equal to 1/2) the dominant singularity

of the generating function under consideration. This is revealed by a Mellin analysis of PA(q)

near its singularity, and the periodic fluctuations, which appear to be in a logarithmic scale,

eventually echo the geometric speed with which poles accumulate at 1/2. Then, thanks to a

suitable extension to the complex plane, the singular expansion can be transfered to coefficients

by the method known as singularity analysis [44, Ch. VI]. The net result is, for the coefficients

pan , an asymptotic form that involves a standard element 2n n g , but multiplied by a periodic

function in log2 n. The presence of oscillations, the transcendental character of the exponent g =

log2 3, and the minute amplitude of these oscillations, about 10−9, are noteworthy features of this

asymptotic problem.

Theorem 3.19. The number pan ≡ pa(3)n of 3-sided prudent polygons of area n satisfies the estimate

pan =
�

κ0+κ(log2 n)
�

2n · n g +O
�

2n · n g−1 log n
�

, n→∞, (3.43)

where the critical exponent is

g = log2 3= 1.58496 . . .

and the “principal” constant is

κ0 =
π

9 log2 sin(πg )Γ(g + 1)

∞
∏

j=0

(1− 1
32− j )(1− 3

22− j )

(1− 1
22− j )2

= 0.1083842946 . . . . (3.44)

The function κ(u) is a smooth periodic function of u, with period 1, mean value zero, and amplitude

approximately 1.54623 · 10−9, which is determined by its Fourier series representation:

κ(u) =
∑

k∈Z\{0}
κk e2i kπu , with κk = κ0 ·

sin(πg )

sin(πg + 2i kπ2/ log2)
·

Γ(1+ g )

Γ(1+ g + 2i kπ/ log2)
.

7Throughout this subsection only dedicated to 3-sided prudent polygons, we omit redundant superscripts and let

pan and PA(q) represent, respectively, what was denoted by pa(3)n and PA(3)(q) in Subsection 3.2.3.
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Table 3.1: Some of the recurring quantities of this subsection, their reduction at q = 1/2 and the

relevant equations in the text.

Quantity q = 1/2 Reference

u =
q

1− q
1 (3.48)

v =
1− q + q2

1− q

3

2
(3.48)

a =
q2

1− q + q2

1

3
(3.66)

γ =
log v

log1/q
log2(3/2) (3.74)

C (q) =
2q(3− 10q + 9q2− q3)

(1− q)(1− 2q)2
∼

1

4(1− 2q)2
(3.46) and (3.51)

A(q) =
2q(1− q)2

(1− 2q)2
∼

1

4(1− 2q)2
(3.46) and (3.50)

The proof of the theorem occupies the next subsections, whose organisation reflects the

informal description given above. We shall then discuss the fine structure of subdominant terms

in the asymptotic expansion of pan ; cf. Theorem 3.29. Some quantities that appear repeatedly

throughout this subsection are tabulated in Table 3.1 for convenience.

Resummations

We start with a minor reorganisation of the formula provided by Theorem 3.17: completion of

the finite products that appear there leads to the equivalent q–hypergeometric form

PA(q) =C (q)+A(q) ·Q(1; q) ·
∞
∑

n=1

(−1)n q2n

(1− 2q)n
·

1

Q(qn ; q)
. (3.45)

Here and throughout this subsection, the notations are

C (q) :=
2q(3− 10q + 9q2− q3)

(1− q)(1− 2q)2
, A(q) :=

2q(1− q)2

(1− 2q)2
, (3.46)

and

Q(z; q) :=Q (z; q ; u(q), v(q)) , where Q(z; q ; u, v) =
(v z; q)∞
(q u z; q)∞

, (3.47)

with

u(q) =
q

1− q
, v(q) =

1− q + q2

1− q
. (3.48)

In the definition of Q, the notation (x; q)n represents the usual q -Pochhammer symbol:

(x; q)n = (1− x)(1− q x) · · · (1− xqn−1).
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Lemma 3.20. The function PA(q) is analytic in the open disc |q | <
p

2− 1, where it admits the

convergent q -hypergeometric representation

PA(q) =C (q)+A(q)
(v; q)∞
(q u; q)∞

∞
∑

n=1
(−1)n

q2n

(1− 2q)n
(uqn+1; q)∞
(vqn ; q)∞

, (3.49)

with A(q),C (q), u ≡ u(q), v ≡ v(q) rational functions given by (3.46) and (3.48).

Proof. The (easy) proof reduces to determining sufficient analyticity regions for the various com-

ponents of the basic formula (3.45), some of the expansions being also of later use. First, the

functions A(q) and C (q) are meromorphic for |q |< 1, with only a pole at q = 1/2. They can be

expanded about the point q = 1/2 to give

A(q) =
1

4(1− 2q)2
+

1

4(1− 2q)
−

1

4
−

1− 2q

4
, (3.50)

C (q) =
1

4(1− 2q)2
+

5

4(1− 2q)
+

3

4
−

17(1− 2q)

4
+O((1− 2q)2). (3.51)

The function Q(1; q) is analytic for |q | < 1 except at the points for which (uq ; q)∞ = 0,

that is, the points σ for which 1− σ − σn = 0 for n ≥ 2. The smallest of these (in modulus) is

ϕ = (
p

5− 1)/2 = 0.618034..., a root of 1− q − q2. So Q(1; q) is certainly analytic at q = 1/2;

the constant term in its expansion about q = 1/2 is

Q(1;1/2) =
(3/2;1/2)∞
(1/2;1/2)∞

=−0.18109782 . . .

In similar fashion, 1/Q(z; q) is bivariate analytic at points (z, q) for which |q | < 1, except

when (v z; q)∞ = 0. This occurs at points (z j , q) where z j := 1
vq j , for j ≥ 0. In particular, for

|q |<θ, where8

θ= 0.56984 . . . := the unique real root of 1− 2x + x2− x3, (3.52)

we have |z0| > θ, hence |z j | > θ, for all j ≥ 0. So, 1/Q(z; q) is analytic in the region {(z, q) :

|z |, |q | < θ}. Thus, for all n ≥ 1, the functions 1/Q(qn ; q) are all analytic and uniformly

bounded by a fixed constant, for |q |< r0, where r0 is any positive number such that r0 <θ.

From these considerations, it follows that the central infinite sum that figures in (3.45) is,

when |q |< r1, dominated in modulus by a positive multiple of the series

∑

n

r 2n
1

(1− 2r1)
n , (3.53)

provided that r1 < θ and r 2
1 /(1− 2r1) < 1. Any positive r1 satisfying r1 <

p
2− 1 is then

admissible. In that case, for |q | < r1, the central sum is a normally convergent sum of analytic

functions; hence, it is analytic. �
8The function v(q) = 1+ q2/(1− q), having nonnegative Taylor coefficients, satisfies |v(q)| ≤ v(|q |), for |q |< 1;

thus, |1/v(q)| ≥ 1/v(|q |). Also, 1/v(x) decreases from 1 to 0 for x ∈ [0,1]. Hence, with θ the real root of 1/v(θ) = θ,

it follows that |z0|>θ as soon as |q |<θ.
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The radius of analyticity of PA(q) is in fact 1/2. In order to obtain larger regions of analyt-

icity, one needs to improve on the reasoning underlying the derivation of (3.53). This will result

from a transformation of the central infinite sum in (3.45), namely,

S(q) :=
∑

n≥1
(−1)n

q2n

(1− 2q)n
·

1

Q(qn ; q)
. (3.54)

Only the bound 1/Q(qn ; q) = O(1) was used in the proof of Lemma 3.20, but we have, for

instance, 1/Q(qn ; q) = 1+O(qn), as n → ∞, and a complete expansion exists. Indeed, since

1/Q is bivariate analytic in |z |, |q |<θ, its z-expansion at the origin is of the form

1

Q(z; q)
= 1+

∑

ν≥1
dν (q)z

ν . (3.55)

In particular, at z = qn , we have

1

Q(qn ; q)
= 1+

∑

ν≥1
dν (q)q

νn . (3.56)

Now, consider the effect of an individual term dν (q) (instead of 1/Q(qn ; q)) on the sum (3.54).

The identity
∑

n≥1
(−1)n

q2n

(1− 2q)n
q νn =−

q ν+2

1− 2q + q ν+2
(3.57)

provides an analytic form for the sum on the left, as long as q is not a pole of the right-hand

side. Proceeding formally, we then get, with (3.56) and (3.57), upon exchanging summations in

the definition (3.54) of S(q), a form of PA(q) that involves infinitely many meromorphic elements

of the form 1/(1− 2q + q ν+2).

We shall detail validity conditions for the resulting expansion; see (3.59) below. What mat-

ters, as seen from (3.57), is the location of poles of the rational functions (1− 2q + q ν+2)−1, for

ν ≥ 1. Define the quantities

ζk := the root in [0,1] of 1− 2x + xk+2 = 0. (3.58)

We have

ζ0 = 1; ζ1 =

p
5− 1

2
≈ 0.618, ζ2 ≈ 0.543, ζ3 ≈ 0.518, . . .

and ζk →
1
2 as k increases. The location of the complex roots of 1− 2x + xk+2 = 0 is discussed

at length in [44, Ex. V.4], as it is related to the analysis of longest runs in binary strings; a

consequence of the principle of the argument (or Rouché’s Theorem) is that, apart from the

positive real root ζk , all other complex roots lie outside the disc |z | < 3
4 . The statement below

builds upon this discussion and provides an extended analyticity region for PA(q) as well as a

justification of the validity of the expansion resulting from (3.56) and (3.57), which is crucial to

subsequent developments.
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Lemma 3.21. The generating function PA(q) is analytic at all points of the slit disc

D0 :=
¦

q : |q |< 55
100 ; q 6∈ [ 1

2 , 55
100]

©

.

For q ∈D0, the function PA(q) admits the analytic representation

PA(q) =C (q)−A(q)
(v; q)∞
(q u; q)∞







q2

(1− q)2
+
∑

ν≥1
dν (q)

q ν+2

1− 2q + q ν+2






, (3.59)

where

dν (q) = [z
ν]

1

Q(z; q)
≡ [zν]

(q u z; q)∞
(v z; q)∞

.

In the disc |z |< 55
100 punctured at 1

2 , the function PA(q) is meromorphic with simple poles at the

points ζ2,ζ3, . . ., with ζk as defined in (3.58). Consequently, the function PA(q) is non-holonomic,

and, in particular, non-algebraic.

Proof. The starting point, noted in the proof of Lemma 3.20, is that fact that 1/Q(z; q) is bi-

variate analytic at all points (z, q) such that |z |, |q |< θ, where θ ≈ 0.56984 is specified in (3.52).

Cauchy’s coefficient formula,

dν (q) =
1

2iπ

∫

|z |=θ1

1

Q(z; q)

d z

zν+1
,

is applicable for any θ1 such that 0 < θ1 < θ. Let us set θ1 =
56
100 . Then, since 1/Q(z; q) is

analytic, hence continuous, hence bounded, for |z | ≤ θ1 and |q | ≤ θ1, trivial bounds applied to

the Cauchy integral yield

|dν (q)|<C ·θ−ν1 , (3.60)

for some absolute constant C > 0.

Consider the double sum resulting from the substitution of (3.56) into (3.54),

S(q) =
∑

n≥1
(−1)n

q2n

(1− 2q)n
·
�

1+
∑

ν≥1
dν (q)q

νn
�

.

If we constrain q to be small, say |q | < 1
10 , we see from (3.60) that the double sum is absolutely

convergent. Hence, the form (3.59) is justified for such small values of q . We can then proceed by

analytic continuation from the right-hand side of (3.59). The bound (3.60) grants us the fact that

the sum that appears there is indeed analytic in D′. The statements, relative to the analyticity

domain and the alternative expansion (3.59) follow. Finally, since the value 1
2 corresponds to an

accumulation of poles (it is straightforward to check that the points ζk are indeed poles, i.e. the

coefficient A(q)(v; q)∞/(q u; q)∞ is non-zero at q = ζk ), the function PA(q) is non-holonomic

(see, e.g., [41] for context). �
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As an immediate consequence of the dominant singularity being at 1
2 , the coefficients pan

must obey a weak asymptotic law of the form

pan = 2nθ(n), where limsup
n→∞

θ(n)1/n = 1,

that is, θ(n) is a (currently unknown) subexponential factor.

More precise information requires a better characterisation of the behaviour of S(q), as q

approaches the dominant singularity 1
2 . This itself requires a better understanding of the coeffi-

cients dν (q). To this end, we state a general and easy lemma about the coefficients of quotients

of q -factorials.

Lemma 3.22. Let a be a fixed complex number satisfying |a|< 1 and let q satisfy |q− 1
2 |<

1
10 . One

has, for ν ≥ 1

[zν]
(az; q)∞
(z; q)∞

=
1

(q ; q)∞

∞
∑

j=0

(aq− j ; q)∞
(q− j ; q) j

· q j ν . (3.61)

Proof. The function h(z) := (az; q)∞/(z; q)∞ has simple poles at the points z j := q− j , for j ≥ 0.

We have

h(z) ∼
z→z j

e j (a; q)

1− zq j
, e j (a; q) :=

(aq− j ; q)∞
(q− j ; q) j (q ; q)∞

.

The usual expansion of coefficients of meromorphic functions [44, Thm. IV.10] immediately

implies a terminating form for any J ∈Z≥0:

[zν]h(z) =
J
∑

j=0

e j (a; q)q j ν +O(Rn
J ), (3.62)

where we may adopt RJ =
3
2 q−J .

The last estimate (3.62) corresponds to an evaluation by residues of the Cauchy integral

representation of coefficients,

[zν]h(z) =
1

2iπ

∫

|z |=RJ

h(z)
d z

zν+1
.

Now, let J tend to infinity. The quantity RJ lies approximately midway between two consecutive

poles, q−J and q−J−1, and it can be verified elementarily that, throughout |z |= RJ , the function

h(z) remains bounded in modulus by an absolute constant (this requires the condition |a|< 1).

It then follows that we can let J tend to infinity in (3.62). For ν ≥ 1, the coefficient integral taken

along |z |= RJ tends to 0, so that, in the limit, the exact representation (3.61) results. �

The formula (3.61) is equivalent to the partial fraction expansion (Mittag-Leffler expansion;

see [67, Sec. 7.10]) of the function h(z), which is meromorphic in the whole complex plane:

(az; q)∞
(z; q)∞

= 1+
1

(q ; q)∞

∞
∑

j=0

(aq− j ; q)∞
(q− j ; q) j

zq j

1− zq j
. (3.63)
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(The condition |a|< 1 ensures the convergence of this expansion.)

A consequence of Lemma 3.22 is an expression for the coefficients dν (q) = [z
ν]Q(z; q)−1,

with Q(z; q) defined by (3.47):

dν (q) =
1

(q ; q)∞

∞
∑

j=0

(q uv−1q− j ; q)∞
(q− j ; q) j

·
�

vq j
�ν

, ν ≥ 1. (3.64)

To see this, set

a = q uv−1 =
q2

1− q + q2
,

and replace z by zv in the definition of h(z). Note that at q = 1/2, we have u = 1, v = 3/2,

a = 1/3, so that, for q ≈ 1/2, we expect dν (q) to grow roughly like (3/2)ν .

Summarizing the results obtained so far, we state:

Proposition 3.23. The generating function of 3-sided prudent polygons satisfies the identity

PA(q) =D(q)− q2A(q)
(a; q)∞(v; q)∞
(q ; q)∞(av; q)∞

∞
∑

ν=1

∞
∑

j=0







(aq− j ; q) j
(q− j ; q) j

·
vν q ( j+1)ν

1− 2q + q ν+2






, (3.65)

where

a =
q2

1− q + q2
, v =

1− q + q2

1− q
, D(q) =C (q)−

q2

(1− q)2
A(q)

(v; q)∞
(av; q)∞

, (3.66)

and A(q),C (q) are rational functions defined in (3.46).

Proof. The identity is a direct consequence of the formula (3.64) for dν (q) and of the expression

for PA(q) in (3.59), using the equivalence av = q u and the simple reorganization

(aq− j ; q)∞ = (aq− j ; q) j · (a; q)∞.

Previous developments imply that the identity (3.65) is, in particular, valid in the real inter-

val (0, 1
2 ). The trivial equality

(aq− j ; q) j
(q− j ; q) j

=
(a− q)(a− q2) · · · (a− q j )

(1− q)(1− q2) · · · (1− q j )
(3.67)

then shows that the expression on the right-hand side indeed represents a bona fide formal power

series in q , since the q -valuation of the general term of the double sum in (3.65) increases with

both j and ν. �

The formula (3.65) of Proposition 3.23 will serve as the starting point of the asymptotic

analysis of PA(q) as q → 1/2 in the next subsection. Given the discussion of the analyticity of

the various components in the proof of Lemma 3.20, the task essentially reduces to estimating

the double sum in a suitable complex neighbourhood of q = 1/2.
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Mellin analysis

Let T (q) be the double sum that appears in the expression (3.65) of PA(q). We shall take it here

in the form

T (q) =
∞
∑

j=0

(aq− j ; q) j
(q− j ; q) j

H j (q) where H j (q) :=
∞
∑

ν=1

vνq ( j+1)ν

1− 2q + q ν+2
. (3.68)

We will now study the functions H j and propose to show that those of greater index con-

tribute less significant terms in the asymptotic expansion of PA(q) near q = 1/2. In this way, a

complete asymptotic expansion of the function PA(q), and hence of its coefficients pan , can be

obtained.

The main technique used here is that of Mellin transforms: we refer the reader to [40] for

details of the method. The principles are recalled below. We then proceed to analyse the double

sum T of (3.68) when q is real and q tends to 1/2. The corresponding expansion is fairly explicit

and it is obtained at a comparatively low computational cost. We finally show that the expansion

extends to a sector of the complex plane around q = 1/2.

Principles of the Mellin analysis

Let f (x) be a complex function of the real argument x. Its Mellin transform, denoted by f ?(s)

orM [ f ], is defined as the integral

M [ f ](s)≡ f ?(s) :=
∫ ∞

0
f (x)x s−1 d x, (3.69)

where s may be complex. It is assumed that f (x) is locally integrable. It is then well known that

if f satisfies the two asymptotic conditions

f (x) =
x→0

O(xα), f (x) =
x→+∞

O(xβ),

with α >β, then f ? is an analytic function of s in the strip of the complex plane,

−α <ℜ(s)<−β,

also known as a fundamental strip. Then, with c any real number of the interval (−α,−β), the

following inversion formula holds (see [121, §VI.9] for detailed statements):

f (x) =
1

2iπ

∫ c+i∞

c−i∞
f ?(s)x−s d s . (3.70)

There are then two essential properties of Mellin transfoms.

(M1) Harmonic sum property. If the pairs (λ,µ) range over a denumerable subset of R×R>0

then one has the equality

M







∑

(λ,µ)

λ f (µx)






(s) = f ?(s) ·







∑

(λ,µ)

λµ−s






. (3.71)
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That is to say, the harmonic sum
∑

λ f (µx) has a Mellin transform that decomposes as

a product involving the transform of the base function ( f ?) and the generalized Dirichlet

series (
∑

λµ−s ) associated with the “amplitudes” λ and the “frequencies” µ. Detailed

validity conditions, spelled out in [40], are that the exchange of summation and integral

be permissible.

(M2) Mapping properties. Poles of transforms are in correspondence with asymptotic expansions

of the original function. More precisely, if the Mellin transform F ? of a function F admits

a meromorphic extension beyond the fundamental strip, with a pole of some order m

at some point s0 ∈ C, with ℜ(s0) < −α, then it contributes an asymptotic term of the

form P (log x)x−s0 in the expansion of F (x) as x→ 0, where P is a computable polynomial

of degree m− 1. Schematically:

F ?(s) :
s→s0

C

(s − s0)
m =⇒ F (x) :

x→0
P (log x)x−s0 =Res

�

f ?(s)x−s�

s=s0
. (3.72)

Detailed validity conditions, again spelled out in [40], are a suitable decay of the transform

F ?(s), as ℑ(s)→±∞, so as to permit an estimate of the inverse Mellin integral (3.70) by

residues – in (3.72), the expression is then none other than the residue of f ?(s)x−s at s = s0.

The power of the Mellin transform for the asymptotic analysis of sums devolves from the

application of the mapping property (M2) to functions F (x) =
∑

λ f (µx) that are harmonic

sums in the sense of (M1). Indeed, the factorisation property (3.71) of (M1) makes it possible

to analyse separately the singularities that arise from the base function (via f ?) and from the

amplitude–frequency pairs (via
∑

λµ−s ); hence an asymptotic analysis results, thanks to (M2).

Analysis for real values of q→ 1/2

Our purpose now is to analyse the quantity T of (3.68) with q < 1/2, when q → 1/2. This

basically reduces to analysing the quantities H j (q) of (3.68). Our approach consists of setting

t = 1− 2q and decoupling9 the quantities t and q . Accordingly, we define the function

h j (t )≡ h j (t ; q , v) := q−2
∞
∑

ν=1

(vq j )ν

1+ t q−ν−2
, (3.73)

so that

H j (q) = h j (t ; q , v(q)),

with the definition (3.68). We shall let t range over R≥0 but restrict the parameter q to a small

interval (1/2− ε0, 1/2+ ε0) of R and the parameter v to a small interval of the form (3/2−
ε1, 3/2+ ε1), since v(1/2) = 3/2. We shall write such a restriction as

q ≈
1

2
, v ≈

3

2
,

9An instance of such a decoupling technique appears in De Bruijn’s reference text [24].
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with the understanding that ε0,ε1 can be taken to be suitably small, as the need arises. Thus, for

the time being, we ignore the relations that exist between t and the pair q , v, and we shall consider

them as independent quantities.

As a preamble to the Mellin analysis, we state an elementary lemma.

Lemma 3.24. Let q be restricted to a sufficiently small interval containing 1/2, and v to a suffi-

ciently small interval containing 3/2. Each function h j (t ) defined by (3.73) satisfies the estimate

h j (t ) =t→+∞
O
�1

t

�

, h j (t ) =t→0







O(1) if j ≥ 1

O(t−γ ) if j = 0, with γ = log v
log(1/q) .

(3.74)

For γ , we can also adopt any fixed value larger than log2(4/3) ≈ 0.415, provided q and v are

taken close enough to 1/2 and 3/2, respectively.

Proof. Behaviour as t → +∞. The inequality (1+ t q−ν−2)−1 < t−1q ν+2 implies by summation

the inequality

h j (t )≤ q−2 t−1
∞
∑

ν=1
vνq j νq ν =O

�1

t

�

, t →+∞,

given the convergence of the geometric series
∑

ν vq ( j+1)ν , for v ≈ 3/2 and q ≈ 1/2.

Behaviour as t → 0. First, for the easy case j ≥ 1, the trivial inequality (1+ t q−ν−2)−1 ≤ 1

implies

h j (t ) =O
�

∑

ν

(vq j )ν
�

=O(1), t → 0.

Next, for j = 0, define the function

ν0(t ) :=−2+
log(1/t )

log(1/q)
,

so that t q−ν−2 < 1, if ν < ν0(t ), and t q−ν−2 ≥ 1, if ν ≥ ν0(t ). Write
∑

ν =
∑

ν0
+
∑

ν≥ν0 . The sum

corresponding to ν ≥ ν0 is bounded from above as in the case of t →+∞,

∑

ν≥ν0(t )

vν

1+ t q−ν−2
≤
∑

ν≥ν0(t )
vν t−1q ν+2 =O

�

t−1(vq)ν0
�

=O
�

t−1(vq)ν0
�

, t → 0,

and the last quantity is O(t−γ ) for γ = (log v)/ log(1/q). The sum corresponding to ν < ν0 is

dominated by its later terms and is accordingly found to be O(t−γ ). The estimate of h0(t ), as

t → 0, results. �

We can now proceed with a precise asymptotic analysis of the functions h j (t ), as t → 0.

Lemma 3.24 implies that each h j (t ) has its Mellin transform h?j (s) that exists in a non-empty

fundamental strip left of ℜ(s) = 1. In that strip, the Mellin transform is
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M [h j (t )] = q−2M
� 1

1+ t

�

·
 

∞
∑

ν=1
(vq j )ν (q−ν−2)−s

!

(by M1)

= q−2M
� 1

1+ t

�

·
vq j+3s

1− vq j+s
(3.75)

= q−2 π

sinπs

vq j+3s

1− vq j+s
(by the classical form ofM [(1+ t )−1]).

The Mellin transform of (1+ t ), which equals π/ sin(πs), admits 0<ℜ(s)< 1 as the funda-

mental strip, so this condition is necessary for the validity of (3.75). In addition, the summability

of the Dirichlet series, here plainly a geometric series, requires the condition |vq j+s | < 1; that

is,

ℜ(s)>− j +
log v

log1/q
.

In summary, the validity of (3.75) is ensured for s satisfying

λ <ℜ(s)< 1, with λ :=max

�

0,− j +
log v

log1/q

�

.

Lemma 3.25. For q ≈ 1/2 and v ≈ 3/2 restricted as in Lemma 3.24, the function h j (t ) admits an

exact representation, valid for any t ∈ (0, q−3),

h j (t ) = (−1) j
vq3γ−2 j−2

log1/q
t j−γΠ(log1/q t )+ q−2

∑

r≥0
(−1)r

vq j−3r

1− vq j−r
t r . (3.76)

Here,

γ ≡ γ (q) :=
log v

log1/q

so that γ ≈ log2
3
2 = 0.415 . . ., when q ≈ 1

2 ; the quantity Π(u) is an absolutely convergent Fourier

series,

Π(u) :=
∑

k∈Z
pk e−2i kπu , (3.77)

with coefficients pk given explicitly by

pk =
π

sin(πγ + 2i kπ2/(log1/q))
. (3.78)

Observe that the pk decrease geometrically with k. For instance, at q = 1/2, one has

pk =O
�

e−2kπ2/ log2
�

=O
�

4.28 · 10−13
�k

, (3.79)

as is apparent from the exponential form of the sine function. Consequently, even the very first

coefficients are small: at q = 1/2, typically,

|p1|= |p−1| ≈ 2.69 · 10−12, |p2|= |p−2| ≈ 1.15 · 10−24, |p3|= |p−3| ≈ 4.95 · 10−37.
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Proof. We first perform an asymptotic analysis of h j (t ) as t → 0+. This requires the determina-

tion of poles to the left of the fundamental strip of h?j (s), and these arise from two sources.

— The relevant poles of π/ sinπs are at s = 0,−1,−2, . . .; they are simple and the residue at

s =−r is (−1)r .

— The quantity (1− vq j+s )−1 has a simple pole at the real point

σ0 :=− j +
log v

log1/q
, (3.80)

as well as complex poles of real part σ0, due to the complex periodicity of the exponential

function (e t+2iπ = e t ). The set of all poles of (1− vq j+s )−1 is then
¨

σ0+
2i kπ

log1/q
, k ∈Z

«

.

The proof of an asymptotic representation (that is, of (3.76), with ’∼’ replacing the equality

sign there) is classically obtained by integrating h?j (s)t
−s along a long rectangle with corners at

−d − iT and c + iT , where c lies within the fundamental strip (in particular, between 0 and 1)

and d will be taken to be of the form −m − 1
2 , with m ∈ Z≥0, and smaller than − j + γ . In

the case considered here, there are regularly spaced poles along ℜ(s) = − j + γ , so that one

should take values of T that are such that the line ℑ(s) = T passes half-way between poles. This,

given the fast decay of π/ sinπs as |ℑ(s)| increases and the boundedness of the Dirichlet series

(1− vq j+s )−1 along ℑ(s) = ±T , allows us to let T tend to infinity. By the Residue Theorem

applied to the inverse Mellin integral (3.70), we collect in this way the contribution of all the

poles at − j + γ + 2i kπ/(log1/q), with k ∈ Z, as well as the m+ 1 initial terms of the sum
∑

r

in (3.76). The resulting expansion is of type (3.76) with the sum
∑

r truncated to m + 1 terms

and an error term that is O(t m+1/2).

In general, what the Mellin transform method gives is an asymptotic rather than exact repre-

sentation of this type. Here, we have more. We can finally let m tend to infinity and verify that

the inverse Mellin integral (3.70) taken along the vertical lineℜ(s) =−m− 1
2 remains uniformly

bounded in modulus by a quantity of the form c t m q−3m , for some c > 0. In the limit m→+∞,

the integral vanishes (as long as t q−3 < 1), and the exact representation (3.76) is obtained. �

We can now combine the identity provided by Lemma 3.25 with the decomposition of the

generating function PA(q) as allowed by Equation (3.68), which flows from Proposition 3.23.

We recall that H j (q) = h j (t ; q , v(q)).

Proposition 3.26. The generating function PA(q) of prudent polygons satisfies, for q in a small

enough interval10 of the form (1/2− ε, 1/2) (for some ε > 0), the identity

PA(q) =D(q)− q2A(q)
(a; q)∞(v; q)∞
(q ; q)∞(av; q)∞

T (q), (3.81)

10Numerical experiments suggest that in fact the formula (3.82) remains valid for all q ∈ (0,1/2).
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where the notations are those of Proposition 3.23, and the function T (q) admits the exact represen-

tation

T (q) = (1− 2q)−γ ·Π
�

log(1− 2q)

log1/q

�

U (q)+V (q), γ ≡
log v

log1/q
, (3.82)

with Π(u) given by Lemma 3.25, Equations (3.77) and (3.78). Set

t = 1− 2q .

The “singular series” U (q) is

U (q) =
vq3γ−2

log1/q

(−q−1 t ; q)∞
(−aq−2 t ; q)∞

, γ =
log v

log1/q
; (3.83)

and the “regular series” V (q) is

V (q) =−
(q ; q)∞
(a; q)∞

q−2

1+ q−2 t
+ q−2 (q ; q)∞(av; q)∞

(a; q)∞(v; q)∞

∞
∑

r=0

(a−1v−1q ; q)r
(v−1q ; q)r

�

−aq−2 t
�r

. (3.84)

Proof. We start from T (q) as defined by (3.68). The q -binomial theorem is the identity [48,

Sec. 1.3]
(θz; q)∞
(z; q)∞

=
∞
∑

n=0

(θ; q)n
(q ; q)n

zn . (3.85)

Now consider the first term in the expansion (3.76) of Lemma 3.25. Sum the corresponding con-

tributions for all values of j ≥ 0, after multiplication by the coefficient
(aq− j ;q) j
(q− j ;q) j

, in accordance

with (3.68). This gives

U (q) =
vq3γ−2

log1/q

∞
∑

j=0

(aq− j ; q) j
(q− j ; q) j

(−q2 t ) j =
vq3γ−2

log1/q

∞
∑

j=0

(a−1q ; q) j
(q ; q) j

(−aq−2 t ) j

which provides the expression for U (q) of the singular series, via the q -binomial theorem (3.85)

taken with z =−at and θ= a−1q .

Summing over j in the second term in the identity (3.76) of Lemma 3.25, we have

V (q) = q−2
∞
∑

r=0
(−q−2 t )r

∞
∑

j=0

(aq− j ; q) j
(q− j ; q) j

vq j−r

1− vq j−r
.

Now, the Mittag-Leffler expansion (3.63) associated with Lemma 3.22 can be put in the form

(az; q)∞
(z; q)∞

= 1+
(a; q)∞
(q ; q)∞

∞
∑

j=0

(aq− j ; q) j
(q− j ; q) j

zq j

1− zq j
.

An application of this identity to V (q), with z = vq−r , shows that

V (q) = q−2 (q ; q)∞
(a; q)∞

∞
∑

r=0
(−q−2 t )r

�

(avq−r ; q)∞
(vq−r ; q)∞

− 1

�

,
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which is equivalent to the stated form of V (q). Note that this last form is a q -hypergeometric

function of type 2φ1; see [48].

So far, we have proceeded formally and left aside considerations of convergence. It can be

easily verified that all the sums, single or double, involved in the calculations above are absolutely

(and uniformly) convergent, provided t is taken small enough (i.e., q is sufficienty close to 1/2),

given that all the involved parameters, such as a, u, v, then stay in suitably bounded intervals of

the real line. �

Analysis for complex values of q→ 1/2

We now propose to show that the “transcendental” expression of PA(q) provided by Proposi-

tion 3.26 is actually valid in certain regions of the complex plane that extend beyond an interval

of the real line. The regions to be considered are dictated by the requirements of the singularity

analysis method to be deployed in the next subsection.

Let θ0 be a number in the interval (0,π/2), called the angle, and r0 a number in R>0, called

the radius. We define a sector (anchored at 1/2) to be the set of all complex numbers z = 1/2+

r e iθ such that

0< r < r0 and θ0 <θ < 2π−θ0.

We stress the fact that the angle should be strictly smaller than π/2, so that a sector in the sense

of the definition always includes a part of the line ℜ(s) = 1/2. The smallness of a sector will be

measured by the smallness of r0. That is to say:

Proposition 3.27. There exists a sectorS0 (anchored at 1/2), of angle11 θ0 <π/2 and radius r0 > 0,

such that the identity expressed by (3.81) and (3.82) holds for all q ∈S0.

Proof. The proof is a simple consequence of analytic continuation. We first observe that an

infinite product such as (c ; q)∞ is an analytic function of both c and q , for arbitrary c and

|q | < 1. Similarly, the inverse 1/(c ; q)∞ is analytic provided cq j 6= 1, for all c . For instance,

taking c = a where a = a(q) = q2/(1− q+ q2) and noting that a(1/2) = 1/3, we see that 1/(a; q)

is an analytic function of q in a small complex neighbourhood of q = 1/2. This reasoning can be

applied to the various Pochhammer symbols that appear in the definition of T (q), U (q),V (q).

Similarly, the hypergeometric sum that appears in the regular series V (q) is seen to be analytic

in the three quantities a ≈ 1/3, v ≈ 3/2, and t = 1− 2q ≈ 0. In particular, the functions U (q)

and V (q) are analytic in a complex neighbourhood of q = 1/2.

Next, consider the quantity

(1− 2q)−γ = exp (−γ log(1− 2q)) .

11A careful examination of the proof of Proposition 3.27 shows that any angle θ0 > 0, however small, is suitable,

but only the existence of some θ0 <π/2 is needed for singularity analysis.
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It is clear that the function γ ≡ γ (q) is analytic in a neighbourhood of q = 1/2, since it equals

(log v)/(log1/q). The logarithm, log(1 − 2q), is analytic in any sector anchored at 1/2. By

composition, there results that (1− 2q)−γ is analytic in a small sector anchored at 1/2. It only

remains to consider the Π factor in (3.81). A single Fourier element, pk e−2i kπu , with u =

log1/q t and t = 1− 2q , is also analytic in a small sector (anchored at 1/2), as can be seen from

the expression

pk e−2i kπu = pk exp

�

−2i kπ
log(1− 2q)

log1/q

�

. (3.86)

Note that, while ℜ(log(1− 2q))→∞ as q → 1/2, the complex exponential exp(2i kπ log2(1−
2q)) remains uniformly bounded, since ℑ(log(1− 2q)) is bounded for q in a sector. Then, given

the fast geometric decay of the coefficients pk at q = 1/2 (in particular pk = O(e−2kπ2/ log2);

cf. (3.78)), it follows that Π(log2 t ) is also analytic in a sector. A crude adjustment of this ar-

gument (see (3.95) and (3.96) below for related expansions) suffices to verify that the geometric

decay of the terms composing (3.86) persists in a sector anchored at 1/2, so that Π(log1/q t ) is

also analytic in such a sector.

Finally, the auxiliary quantities D(q),A(q) are meromorphic at q = 1/2, with at most a

double pole there; in particular, they are analytic in a small enough sector anchored at 1/2. We

can then choose for S0 a small sector that satisfies this as well as all the previous analyticity

constraints. Then, by unicity of analytic continuation, the expression on the right-hand side

of (3.81), with T (q) as given by (3.82), must coincide with (the analytic continuation of) PA(q)

in the sector S0. �

Singularity analysis and transfer

If we drastically reduce all the non-singular quantities that occur in the main form (3.81) of

Proposition 3.26 by letting q → 1/2, we are led to infer that PA(q) satisfies, in a sector around

q = 1/2, an estimate of the form

PA(q) = ξ0 (1− 2q)−γ0−2Π(log2(1− 2q))+O
�

(1− 2q)−3/2
�

, γ0 := log2(3/2), (3.87)

where

ξ0 =−
1

16
U (1/2)

(1/3;1/2)∞(3/2;1/2)∞
(1/2;1/2)∞(1/2;1/2)∞

, U (1/2) =
16

9 log2
, (3.88)

and U (q) is the singular series of (3.83). Let us ignore for the moment the oscillating terms and

simplifyΠ(u) to its constant term p0, with pk given by (3.78). This provides a numerical approx-

imation ÓPA(q) of PA(q). With the general asymptotic approximation (derived from Stirling’s

formula)

[qn](1− 2q)−λ ∼
n→+∞

1

Γ(λ)
2n nλ−1, λ 6∈Z≤0, (3.89)

it is easily seen that [qn]ÓPA(q) is asymptotic to the quantity κ02n n g of Equation (3.43) in

Theorem 3.19, which is indeed the “principal” asymptotic term of pan = [q
n]PA(q), where

g = γ0+ 1= log2 3.
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A rigorous justification and a complete analysis depend on the general singularity analysis

theory [44, Ch. VI] applied to the expansion of PA(q) near q = 1/2 (see also Chapter 1 for a

brief overview). We recall that a∆-domain with base 1 is defined to be the intersection of a disc of

radius strictly larger than 1 and of the complement of a sector of the form−θ0 < arg(z−1)<θ0

for some θ0 ∈ (0,π/2). A ∆-domain with base ρ is obtained from a ∆-domain with base 1 by

means of the homothetic transformation z 7→ ρz. Singularity analysis theory is then based on

two types of results.

(S1) The coefficients of functions in a basic asymptotic scale have known asymptotic expan-

sions [44, Thm. VI.1]. In the case of the scale (1 − z)−λ, the expansion, which ex-

tends (3.89), is of the form

[zn](1− z)−λ ∼
n→+∞

nλ−1






1+
∑

k≥1

ek

nk






, λ ∈C \Z≥0,

where ek is a computable polynomial in λ of degree 2k. Observe that this expansion is

valid for complex values of the exponent λ, and if λ= σ + iτ, then

nλ−1 = nσ−1 · n iτ = nσ−1e iτ log n .

Thus, the real part (σ ) of the singular exponent drives the asymptotic regime; the imag-

inary part, as soon as it is nonzero, induces periodic oscillations in the scale of log n. A

noteworthy feature is that smaller functions at the singularity z = 1 have asymptotically

smaller coefficients.

(S2) An approximation of a function near its singularity can be transferred to an approxima-

tion of coefficients according to the rule

f (z) =
z→1

O
�

(1− z)−λ
�

=⇒ [zn] f (z) =
n→+∞

O
�

nλ−1
�

.

The condition is that f (z) be analytic in a∆–domain and that the O–approximation holds

in such a ∆-domain, as z → 1; see [44, Thm. VI.3]. Once more, smaller error terms are

associated with smaller coefficients.

Equipped with these principles, it is possible to obtain a complete asymptotic expansion of

[qn]PA(q) once a complete expansion of PA(q) in the vicinity of q = 1/2 has been obtained (set

q = z/2, so that z ≈ 1 corresponds to q = 1/2). In this context, Proposition 3.23 precisely grants

us the analytic continuation of PA(q) in a ∆-domain anchored at 1/2, with any opening angle

arbitrarily small; Proposition 3.26, together with Proposition 3.27, describe in a precise manner

the asymptotic form of PA(q) as q→ 1/2 in a∆-domain and it is a formal exercise to transform

them into a standard asymptotic expansion, in the form required by singularity analysis theory.
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Proposition 3.28. As q→ 1/2 in a∆-domain, the function PA(q) satisfies the expansion

PA(q) ∼
q→1/2

1

(1− 2q)
+R(q)+

∑

j≥1

(1− 2q)−γ0−2+ j
j
∑

`=0

(log(1− 2q))`Π( j ,`)(log2(1− 2q)), (3.90)

with γ0 = log2(3/2). Here R(q) is analytic at q = 1/2 and each Π( j ,`)(u) is a Fourier series

Π( j ,`)(u) :=
∑

k∈Z
p ( j ,`)

k
e2i kπu ,

with a computable sequence of coefficients p ( j ,`)
k

.

Proof. From Proposition 3.26, we have

PA(q) = PAreg(q)+ PAsing(q), (3.91)

where the two terms correspond, respectively, to the “regular” part (involving the regular se-

ries V (q)) and the “singular part” (involving the singular series U (q) as well as the factor (1−
2q)−γ and the oscillating series).

Regarding the regular part, we have, with the notations of Proposition 3.26,

PAreg(q) =D(q)− q2A(q)
(a; q)∞(v; q)∞
(q ; q)∞(q ; q)∞

V (q). (3.92)

We already know that A(q) and D(q) are meromorphic at q = 2 with a double pole, while

V (q) and the Pochhammer symbols are analytic at q = 1/2. Thus, this regular part has at

most a double pole at q = 1/2. A simple computation shows that the coefficient of (1− 2q)−2

reduces algebraically trivially – in the sense that no q -identity is involved – to 0. Thus, the

regular part involves only a simple pole at q = 1/2, as is expressed by the first two terms of the

expansion (3.91), where R(q) is analytic at q = 1/2. (Note that the coefficient of (1− 2q)−1 is

exactly 1, again for trivial reasons.)

The singular part is more interesting and it can be analysed by the method suggested at the

beginning of this subsection. Whenever convenient, we freely use the abbreviation t = 1− 2q .

The function γ (q) = (log v)/(log1/q) is analytic at q = 1/2, where

γ (q) = log2
3

2
+ 2

log3

(log2)2
(q − 1

2 )+ · · ·

≈ 0.58496+ 4.5732(q − 1
2 )+ 16.317(q − 1

2 )
2+ 39.982(q − 1

2 )
3+ 86.991(q − 1

2 )
4+ · · ·

The function (1− 2q)−γ can then be expanded as

(1− 2q)−γ (q) = (1− 2q)−γ0 e−(γ (q)−γ0) log t , with γ0 = γ (1/2) = log2
3

2

= (1− 2q)−γ0

�

1+
log3

(log2)2
t log t + t 2P2(log t )+ t 3P3(log t )+ · · ·

�

,
(3.93)

82



for a computable family of polynomials P2, P3, . . ., where deg P` = ` and P`(0) = 0. For instance,

we have, with y := log t :

(1− 2q)−(γ−γ0) log t ≈ 1+ 2.28t y + t 2(−4.07y + 2.61y2)+ t 3(4.99y − 9.32y2+ 1.99y3)+ · · ·

The singular series U (q) of (3.83) is analytic at q = 1/2 and its coefficients can be determined,

both numerically and, in principle, symbolically in terms of Pochhammer symbols and their

logarithmic derivatives (which lead to q -analogues of harmonic numbers). Numerically, they

can be estimated to high precision, by bounding the infinite sum and products to a finite but

large value. (The validity of the process can be checked empirically by increasing the values of

this threshold, the justification being that all involved sums and products converge geometrically

fast – we found that replacing+∞ by 100 in numerical computations provides estimates that are

at least correct to 25 decimal digits.) In this way, we obtain, for instance, the expansion of the

function V (q), which is of the form

U (q)≈
16

9 log2
+ 9.97 t + 21.5 t 2+ 35.8 t 3+ 51.9 t 4+ · · · . (3.94)

Finally, regarding Π(u) taken at u = log1/q (1−2q), we note that the coefficients pk of (3.78)

can be expanded around q = 1/2 and pose no difficulty, while the quantities e2i kπu can be

expanded by a process analogous to (3.93). Indeed, we have

pk ≡ pk (q) =
π

sin(πγ0+ 2i kπ2/ log2)
· exp

�

1+ e1(k)t + e2(k)t
2+ · · ·

�

, (3.95)

where the ek only grow polynomially with k. Also, at u = log1/q (1− 2q), one has

e2i kπu = (1− 2q)2i kπ/ log2 exp
�

2i kπ log2 t
�

g1 t + g2 t 2+ · · ·
��

, (3.96)

where the coefficients g j are those of (log1/q)−1− (log2)−1 expanded at q = 1/2 and expressed

in terms of t = 1− 2q .

We can now recapitulate the results of the discussion of the singular part: from (3.94), (3.95),

and (3.96), we find that the terms appearing in the singular expansion of PA(q) are of the form,

for j = 0,1,2, . . .,

(1− 2q)−γ0−2 t j (log t )` t 2i kπ/ log2,

with ` such that 0 ≤ ` ≤ j and k ∈ Z. The terms at fixed j ,` add up to form the Fourier series

Π( j ,`), whose coefficients exhibit a fast decrease with |k|, similar to that encountered in (3.79).

Consequently, a finite version of (3.90) at any order holds, so that the statement results. �

With this last proposition, we can conclude the proof of Theorem 3.19.

Proof of Theorem 3.19. The analytic term R(q) in (3.90) leaves no trace in the asymptotic form

of coefficients. Thus the global contribution of the regular part to coefficients pan reduces to 2n

(with coefficient 1 and no power of n), corresponding to the term (1− 2q)−1 in (3.90).
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The transfer to coefficients of each term of the singular part of (3.90) is permissible, given the

principles of singularity analysis recalled above. Only an amended form allowing for logarithmic

factors is needed, but this is covered by the general theory: for the translation of the coefficients

of the basic scale (1− z)−λ logk (1− z), see [44, Sec. VI.2]. From a computational point of view,

one may conveniently operate [44, Note VI.7] with

[zn](1− z)−λ (log(1− z))k = (−1)k
∂

∂ λ

Γ(n+λ)

Γ(λ)Γ(n+ 1)
,

then replace the Gamma factors of large argument by their complete Stirling expansion.

We can now complete the proof of Theorem 3.19. It suffices to retain the terms correspond-

ing to j = 0 in (3.90), in which case the error term is of the form O
�

(1− 2q)−γ0−1 log(1− 2q)
�

,

which corresponds to a contribution that is O(nγ0 log n) =O(n g−1 log n) for pan .

Next, regarding the Fourier element of index k = 0, the function-to-coefficient correspon-

dence yields

(1− 2q)−γ0−2 =⇒
nγ0+1

Γ(γ0+ 2)

�

1+O
� 1

n

��

.

Thus, the coefficient κ0 in (3.44) has value (cf (3.87) and (3.88)) given by

κ0 = ξ0 · p0|q=1/2 ·
1

Γ(γ0+ 2)
, γ0 =

log3/2

log2
,

with ξ0 as in (3.88). This, given the form (3.78) of pk at k = 0, is equivalent to the value of κ0

stated in Theorem 3.19 (where g := γ0+ 1= log2 3).

For a Fourier element of index k ∈Z, we have similarly

(1− 2q)−γ0−2−iχk =⇒
nγ0+1+iχk

Γ(γ0+ 2+ iχk )
(1+O(1/n)) , where χk :=

2kπ

log2
.

We finally observe that

nγ0+1+iχk = nγ0+1e iχk log n ,

so that all the terms, for k ∈ Z, are of the same asymptotic order (namely, O(nγ0+1)) and their

sum constitutes a Fourier series in log n. The Fourier coefficient κk then satisfies, from the

discussion above:

κk = ξ0 · pk |q=1/2 ·
1

Γ(γ0+ 2+ iχk )
.

Thus finally, with g ≡ γ0+ 1:

κk =
π

9 log2 sin(πg + 2i kπ2/ log2)Γ(g + 1+ 2i kπ/ log2)

∞
∏

j=0

(1− 1
32− j )(1− 3

22− j )

(1− 1
22− j )2

. (3.97)

This completes the proof of Theorem 3.19. �

The same method shows the existence of a complete asymptotic expansion for pan .
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Figure 3.8: The difference (pan −Ω6)2
−n n−g against log2 n, where Ω6 is the six-term extension

of (3.98), for n up to 6000. The diagram confirms the presence of oscillations that, asymptoti-

cally, have amplitude of the order of 10−9.

Theorem 3.29. The number of 3-sided prudent polygons satisfies a complete asymptotic expansion,

pan = 2n + 2n · n g
�

Ξ0,0+
1

n

�

log n ·Ξ1,1+Ξ1,0

�

+
1

n2

�

log2 n ·Ξ2,2+ log n ·Ξ2,1+Ξ2,0

�

· · ·
�

,

where Ξ j ,` is an absolutely convergent Fourier series in log n.

The non-oscillating form obtained by retaining only the constant terms of each Fourier

series is computed by a symbolic manipulation system such as MAPLE or MATHEMATICA in a

matter of seconds and is found to start as

Ω5

2n ≈ 1+ 0.1083842947 · n g

+(−0.3928066917L+ 0.5442458535) · n g−1

+
�

0.2627062704 L2+ 0.6950193894 L+ 0.6985601031
�

· n g−2

+
�

0.08310555463 L3− 0.02188678892 L2− 1.570478457 L− 1.18810811075202
�

· n g−3

+
�

0.06722511293 L4+ 0.05494834609 L3− 3.297513638 L2− 4.663711650 L

− 4.156441653
�

· n g−4, (3.98)

where L = log n. In principle, all the coefficients have explicit forms in terms of the basic

quantities that appear in Theorem 3.19 (augmented by derivatives of q -Pochhammer symbols at

small rational values). However, the corresponding formulae blow up exponentially, so that we

only mention here the next coefficient −0.39280 . . . in (3.98), whose exact value turns out to be

−κ0
log3

log2 2
g .
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Figure 3.8 displays the difference between pan and the six-term extension Ω6 of (3.98). It is

piquant to note that all the terms given in (3.98) are needed in order to succeed in bringing the

fluctuations of Figure 3.8 out of the closet.

Conclusions

Classification of prudent polygons. Our first conclusion is that the present study permits us to

advance the classification of prudent walks and polygons: the generating functions and their

coefficient asymptotics are now known in all cases up to 3-sided (walks by length; polygons by

either perimeter or area). Functional equations are also known for 4-sided prudent walks and

polygons, from which it is possible to distill plausible estimates.

In particular, recall from Subsection 3.2.3 that we estimated that the number pa(4)n of 4-sided

prudent polygons of area n satisfies

pa(4)n ∼ α2n nβ

where 2.58 < β < 2.61. In light of the results of this subsection, it seems plausible that the

multiplier α might not be constant, and might instead have an oscillating nature similar to that

found in the 3-sided case. Moreover, it is tempting to conjecture that the exponentβ is precisely

one greater than that of the 3-sided model, that is, β= 1+ log2 3= 2.5849625 . . ..

We have investigated this conjecture with some success. First, we considered the Hadamard

quotient of the series for 4-sided polygons and that of the derivative of the series for 3-sided

polygons. (Differentiation increases the exponent by 1.) If the conjecture is true, the coefficients

of the Hadamard quotient should tend to a constant. Extrapolating the quotient

hn = n
pa(3)n

pa(4)n

,

we find a limit of 3.25± 0.05. Next, we tested the proposal that the asymptotics for the 4-sided

case are given by the derivative of the 3-sided case. We fitted successive quartets of coefficients

a j ,a j+1,a j+2,a j+3 to

pa(4)n = 2n(κn g +κ1n2+κ2n g−1 log n+κ3n g−1)

where g = log2 3+ 1. Estimates of κ are well-converged to ≈ 0.03341, implying that the “am-

plitude” of the 3-sided polygons should be ≈ 0.108, which agrees well with the exact value of

0.1083842947 . . . calculated above. On balance, we believe the “conjecture” is more likely to be

true than not.

We can then summarise the present state of knowledge with Table 3.2 (we mark conjectural

results with a (?)).

(The oscillating coefficient C3(n) is expressible in terms the Fourier series κ(u) of Theo-

rem 3.19.)
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Table 3.2: Summary of known results for enumerations of prudent polygons by area.

Prudent polygons Generating function Asymptotic number References

2-sided rational 2n Proposition 3.14

3-sided non-holonomic C3(n) · 2
n nlog2 3 Theorem 3.19

4-sided functional equation C4(n) · 2
n n1+log2 3 (?) Proposition 3.18.

Methodology. The generating function of 3-prudent polygons has been found to be a q -

hypergeometric function, with the argument and parameters subject to a rational substitution.

The methods developed here should clearly be useful in a number of similar situations. Note

that the asymptotic enumeration of prudent walks and polygons by length and perimeter is in a

way easier since the dominant singularity is polar or algebraic. (Bousquet-Mélou [17] however

exhibits an interesting situation where the complete singular structure has a complex geometry.)

Estimates involving periodic oscillations are not unheard of in combinatorial asymptotics [44,

91, 92]. What is especially interesting in the case of 3-sided prudent polygons is the pattern of

singularities that accumulate geometrically fast to the dominant singularity. This situation is

prototypically encountered in the already evoked problem of the longest run in strings: the

classical treatment is via real analytic methods followed by a Mellin analysis of the expressions

obtained; see [79]. In fact, the chain

Coefficient asymptotics Mellin transform + Singularity analysis (3.99)

is applicable for moment analyses. For instance, the analysis of the expected longest run of

the letter a in a random binary sequence over the alphabet {a, b} leads to the generating func-

tion [44, Ex. V.4]

Φ(z) = (1− z)
∑

k≥0

zk

1− 2z + zk+1
,

to which the chain (3.99) can be applied.

Another source of similar phenomena is the analysis of digital trees [82, 108], when these

are approached via ordinary generating functions (rather than the customary exponential or

Poisson generating functions). Typically, in the simplest case of node-depth in a random digital

tree, one encounters the generating function

Ψ(z) =
1

1− z

∑

k≥0

2−k

1− z(1− 2−k )
,

where the geometric accumulation of poles towards 1 is transparent, so that the chain (3.99) can

once more be applied [43].

We should finally mention that “critical” exponents similar to g = log2 3 surface at several

places in mathematics, usually accompanied by oscillation phenomena, but they do so for rea-

sons essentially simpler than in our chain (3.99). For instance, in fractal geometry, the Hausdorff
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dimension of the triadic Cantor set is 1/g , see [38], while that of the familiar Sierpiński gasket

is g , so that g occurs as critical exponent in various related integer sequences [42]. The same

exponent g = log2 3 ≈ 1.58 is otherwise known to most students of computer science, since it

appears associated with the recurrent sequence fn = n + 3 fbn/2c, which serves to describe the

complexity of Karatsuba multiplication [81] (where, recursively, the product of two double-

precision numbers is reduced to three single-precision numbers). In such cases, the exponent g

is eventually to be traced to the singularity (at s = g , precisely) of the Dirichlet series

ω(s) =
1

1− 3 · 2−s ,

which is itself closely related to the Mellin transforms of (3.75). See also the studies by Drmota

and Szpankowski [30], Dumas [32], as well as [42] for elements of a general theory.

Comparison with other SAW and SAP models. We know of no other SAW or SAP models,

solvable or otherwise, which display oscillatory behaviour resembling (3.98). (Excepting rather

trivial examples, like the fact that a SAP on the square or honeycomb lattice must have even

perimeter.) We were only able to detect the oscillating component of pa(3)n after solving and

analysing the generating function; if another model displayed similar behaviour, it is highly

unlikely that the oscillations could be detected from numerical data alone, and so one would

need to be able to solve the generating function in order to state definitively that oscillatory

behaviour were present.

At this stage the reason for the oscillatory behaviour of pa(3)n is a mystery to us, and for

this reason we are reluctant to suggest that any other SAW or SAP models might display such

behaviour. The one exception is 4-sided prudent polygons, whose asymptotic form (see Table 3.2

above) appears to be very closely related to the 3-sided case. We are especially hesitant to make

any conjectures about general SAW and SAP models, as there are already a number of well-

supported conjectures regarding those models which do not feature oscillatory behaviour. (See

Chapter 1 for some further discussion.) In particular, in five or more dimensions it has been

proven (again, refer to Chapter 1) that

cn ∼Aµn

directly contradicting the possiblity of oscillatory behaviour.

3.3 Other square lattice models

We saw in the last section that prudent walks are, in a sense, a generalisation of partially directed

walks – the latter can be considered as 1-sided prudent walks, and these can then be extended to

2-sided and so on. In this section we will examine some further generalisations, namely perimeter

walks and quasi-prudent walks, so that we have a chain which looks like
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directed ⊂ prudent ⊂ perimeter ⊂ quasi-prudent.12

We will also briefly mention some other solvable models which display interesting behaviour.

3.3.1 Perimeter walks and polygons

Recall that the constructions we used for prudent walks in Subsection 3.2.1 used the property

that the endpoint of any prudent walk always lies on the boundary of its bounding box (the

smallest rectangle on the lattice which contains the entire walk). This property suggests that

we can define a new class of walks which are characterised entirely by this restriction, without

necessarily being prudent. That is, a perimeter walk is a SAW which, after every step, ends on

the boundary of the current bounding box. This definition leads to the same sub-classification

we used for prudent walks:

• A 1-sided perimeter walk must, after every step, end on the east side of its current bounding

box. These are the same as 1-sided prudent walks, or equivalently NES-directed walks.

• A 2-sided perimeter walk must, after every step, end on the east or north side of its current

bounding box.

• A 3-sided perimeter walk must, after every step, end on the east, north or west side of

its current bounding box, and in addition cannot step from the south-east to south-west

corner (or vice versa) when the box has width one.

• A 4-sided or unrestricted perimeter walk may end on any side of its bounding box.

See Figure 3.9 for examples of 2-, 3- and 4-sided perimeter walks.

Analogously to the prudent case, we define a k-sided perimeter polygon to be a k-sided perime-

ter walk which ends at a vertex adjacent to the origin.

2-sided perimeter walks

The difficulty of solving perimeter walks, in comparison to their prudent counterparts, becomes

clear as soon as we consider the 2-sided case. Here, we will generate the walks in the same way

as for prudent walks – by considering the last inflating step (LIS), which must be east or north.

However, we will need to use two catalytic variables, and thus find that the 2-sided walks are the

most general subclass of perimeter walks that we can solve exactly.

12If we define perimeter walks in three dimensions in the obvious way (i.e. the endpoint of a walk must lie on the

smallest rectangular prism containing the entire walk), then this hierarchy breaks down – there exist prudent walks

in three dimensions which are not perimeter walks. Numerical calculations by Garoni [9] suggest the growth rate

for three-dimensional prudent walks is about 4.4913, while for perimeter walks it is only 4.33.
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Figure 3.9: 2-sided, 3-sided and 4-sided (unrestricted) perimeter walks on the square lattice.

i

j

Figure 3.10: A 2-sided perimeter walk with the distances i and j measured by the variables u and

v indicated. Note that a walk which ends at the north-east corner of its box will have i = j = 0.

Since we have a reflective symmetry in the line y = x, we only need to count walks ending

on the east side of their bounding box. So define the generating function

R(t ; u, v) =
∑

n,i , j≥0

rn,i , j t n u i v j

where rn,i , j is the number of 2-sided perimeter walks of length n which end on the east side of

their bounding box, with distance i from the endpoint to the north-east corner of the bounding

box and distance j between the north-east corner and the nearest occupied vertex on the north

side of the box. (If a walk ends at the north-east corner of its box, it will have i = j = 0.) See

Figure 3.10 for an illustration.

Lemma 3.30. The generating function R(t ; u, v) satisfies the functional equation

 

1− t v −
t 2v

u − t
−

t 2uv

1− t u

!

R(t ; u, v) =
1

1− t u
−

t uv

u − t
R(t ; t , v)

+
t (2− t u)

1− t u
R(t ; t , 1)−

t 2u

1− t u
R(t ; t , t u)+

t 2u(1− v)

1− t u
R(t ; 0, 1). (3.100)

Proof. There are three cases to consider:
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• No LIS: The walk must be empty or contain only south steps; the generating function is

thus
1

1− t u
. (3.101)

• LIS east: After the inflating step, the walk can take up to i steps north or unbounded

steps south. If it does not step all the way to the north-east corner, j increases by one; if it

does then j becomes zero. The generating function is then

∑

n,i , j≥0

rn,i , j t n u i v j · t v

 

1+
i−1
∑

l=1

t l u−l + t i u−i v− j−1+
∞
∑

l=1

t l u l

!

= t
∑

n,i , j≥0

rn,i , j t n

 

u i v j+1+
v j+1(t u i − u t i )

u − t
+ t i +

t u i+1v j+1

1− t u

!

= t vR(t ; u, v)+
t v

u − t
(t R(t ; u, v)− uR(t ; t , v))+ t R(t ; t , 1)+

t 2uv

1− t u
R(t ; u, v).

(3.102)

However, the above fails in the case that i = 0, i.e. the inflating step is from the north-east

corner of the box. (In that case j does not increase.) We correct this by subtracting off the

offending terms,

−t vR(t ; 0, v)−
t v

u − t
(t R(t ; 0, v)− uR(t ; 0, v))− t R(t ; 0, 1)−

t 2uv

1− t u
R(t ; 0, v), (3.103)

and then adding back on the corrected versions (without the extra factor of v):

t R(t ; 0, v)+
t 2u

1− t u
R(t ; 0, v). (3.104)

We note here that rn,0, j 6= 0 only when j = 0, and so R(t ; 0, v) has no dependence on v.

Thus we can replace any R(t ; 0, v) term in (3.103) and (3.104) with R(t ; 0, 1).

• LIS north: After the inflating step, the walk must step east to the north-east corner of the

box. If the inflating step was not from the north-east corner, the walk may be able to then

take south steps down the east side of the box (while remaining self-avoiding, of course).

The generating function is thus

∑

n,i , j≥0

rn,i , j t n · t i+1
j
∑

l=0

t l u l

= t
∑

n,i , j≥0

rn,i , j t n+i 1− (t u) j+1

1− t u

=
t

1− t u
(R(t ; t , 1)− t uR(t ; t , t u)). (3.105)

Now every 2-sided perimeter walk ending on the east side of its bounding box is covered by ex-

actly one of the above three cases; so by adding (3.101)–(3.105) we obtain R(t ; u, v). Rearranging

then gives (3.100). �
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Setting u = 0 and v = 1 in (3.100) gives

R(t ; 0, 1) = 1+ 2t R(t ; t , 1), (3.106)

which can then be substituted into (3.100):
 

1− t v −
t 2v

u − t
−

t 2uv

1− t u

!

R(t ; u, v) =
1+ t 2u − t 2uv

1− t u
−

t uv

u − t
R(t ; t , v)

−
t 2u

1− t u
R(t ; t , t u)+

t (2− t u + 2t 2u − 2t 2uv)

1− t u
R(t ; t , 1). (3.107)

From here we will apply the iterated kernel method to determine the solution to R(t ; 1, 1).

There are some intermediate steps, so we split the overall result into several parts.

Lemma 3.31. Define

S ≡ S(t ; v) =
1− t v + t 2+ t 3v −

Æ

(1− t v + t 2+ t 3v)2− 4t 2

2t

and then, recursively,

Sn ≡ Sn(t ; v) = Sn−1(t ; t S(t ; v)) = S(t ; t Sn−1(t ; v))

with S0 = v, S1 = t S(t ; v), etc. Then define

An(t ; v) =
(Sn+1− t 2)(1+ t Sn+1− t Sn Sn+1)

t Sn Sn+1(1− Sn+1)
,

Bn(t ; v) =
−(Sn+1− t 2)

Sn(1− Sn+1)
,

Cn(t ; v) =
(Sn+1− t 2)(2− Sn+1+ 2t Sn+1− 2t Sn Sn+1)

Sn Sn+1(1− Sn+1)
.

Then the generating function R(t ; t , 1) has the solution

R(t ; t , 1) =

∞
∑

n=0
An(t ; 1)

n−1
∏

k=0

Bk (t ; 1)

1−
∞
∑

n=0
Cn(t ; 1)

n−1
∏

k=0

Bk (t ; 1)

. (3.108)

Proof. Define the kernel

K(t ; u, v) = 1− t v −
t 2v

u − t
−

t 2uv

1− t u
.

The equation K(t ; u, v) = 0 has one root in v and two in u, but only one of these, u = S, is a

power series in t .Substituting u = S into (3.107) gives

R(t ; t , v) =
S − t

t vS

 

1+ t 2S − t 2vS

1− t S
−

t 2S

1− t S
R(t ; t , t S)+

t (2− t S + 2t 2S − 2t 2Sv)

1− t S
R(t ; t , 1)

!

,

(3.109)
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or equivalently,

R(t ; t , S0) =A0+B0R(t ; t , S1)+C0R(t ; t , 1). (3.110)

Sending v 7→ Sn gives

R(t ; t , Sn) =An +Bn R(t ; t , Sn+1)+Cn R(t ; t , 1), (3.111)

and with back-substitution we arrive at

R(t ; t , S0) =
N
∑

n=0
An

n−1
∏

k=0

Bk +
N
∏

n=0
Bn ·R(t ; t , SN+1)+

N
∑

n=0
Cn

n−1
∏

k=0

Bk ·R(t ; t , 1). (3.112)

If we define S̄n ≡ S̄n(t ) = Sn(t ; 1), then setting v = 1 in (3.112) gives

R(t ; t , 1) =
N
∑

n=0
An(t ; 1)

n−1
∏

k=0

Bk (t ; 1)+
N
∏

n=0
Bn(t ; 1) ·R(t ; t , S̄N+1)

+
N
∑

n=0
Cn(t ; 1)

n−1
∏

k=0

Bk (t ; 1) ·R(t ; t , 1). (3.113)

Now, we wish to take the limit N → ∞. All the terms in (3.113) are power series in t , with

An(t ; v) = 1+ t 2 +O(t 3), Bn(t ; v) = −t 3 +O(t 4) and Cn(t ; v) = 2t + t 3 +O(t 4), whenever

v is a power series in t . In addition, S̄N converges to a fixed power series as N →∞, namely

t 2+ t 5+2t 8+ t 10+O(t 11). So R(t ; t , S̄N+1) converges to a fixed power series as N →∞, namely

1+ 2t + 5t 2+ 27t 4+ 64t 5+O(t 6).

Hence we see that the first and third terms on the RHS of (3.113) converge to fixed power

series in t as N →∞, while the second term disappears. So we obtain

R(t ; t , 1) =
∞
∑

n=0
An(t ; 1)

n−1
∏

k=0

Bk (t ; 1)+
∞
∑

n=0
Cn(t ; 1)

n−1
∏

k=0

Bk (t ; 1) ·R(t ; t , 1), (3.114)

and the result of the lemma follows. �

Note that in the proof above we only consider the functions as formal power series in t – we

have not yet taken radii of convergence, etc. into account. We will finish by writing down the

solution to R(t ; 1, 1) before considering the singularities of the generating functions.

Theorem 3.32. Define An ,Bn and Cn as in Lemma 3.31. Then the generating function R(t ; 1, 1)

has the solution

R(t ; 1, 1) =
1

1− 2t − t 2



1− t 2
∞
∑

n=0
An(t ; t )

n−1
∏

k=0

Bk (t ; t )

+

 

t − t 2− t 2
∞
∑

n=0
Cn(t ; t )

n−1
∏

k=0

Bk (t ; t )

!

R(t ; t , 1)



 . (3.115)
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Proof. Define S̃n ≡ S̃n(t ) = Sn(t ; t ). Setting v = t in (3.112) gives

R(t ; t , t ) =
N
∑

n=0
An(t ; t )

n−1
∏

k=0

Bk (t ; t )+
N
∏

n=0
Bn(t ; t ) ·R(t ; t , S̃N+1)

+
N
∑

n=0
Cn(t ; t )

n−1
∏

k=0

Bk (t ; t ) ·R(t ; t , 1). (3.116)

Similar arguments to those used in Lemma 3.31 provide for convergence as N →∞, and so we

obtain

R(t ; t , t ) =
∞
∑

n=0
An(t ; t )

n−1
∏

k=0

Bk (t ; t )+
∞
∑

n=0
Cn(t ; t )

n−1
∏

k=0

Bk (t ; t ) ·R(t ; t , 1). (3.117)

Setting u = v = 1 in (3.107) and substituting (3.117) gives the theorem. �

Combining walks which end on the east side of their bounding box with those ending on the

north side and applying the inclusion-exclusion principle allows us to find the overall generating

function of 2-sided perimeter walks.

Corollary 3.33. The generating function for 2-sided perimeter walks is

E (2)(t ) =
∑

n≥0
e (2)n t n = 2R(t ; 1, 1)−R(t ; 0, 1), (3.118)

where R(t ; 0, 1) can be obtained from R(t ; t , 1) via (3.106).

From here, it is natural to wish to know the singular behaviour of E (2)(t ), as it is this which

determines the asymptotic behaviour of the coefficients e (2)n . Unfortunately, the structure of

E (2)(t ) is such that we have been unable to determine the exact value of the dominant singularity,

though we can estimate it numerically with a high level of precision.

Conjecture 3.34. The dominant singularity of E (2)(t ) is a simple pole at t = ρ≈ 0.399361698853,

with uncertainty confined to the last digit. The number of 2-sided perimeter polygons of length n is

asymptotically

e (2)n ∼Aτn

where τ = ρ−1 ≈ 2.50399575841 and A≈ 2.27287.

We are quite confident as to the truth of this conjecture, but given the fact that we can only

obtain a numerical estimate, as well as the complexity of the generating functions, we will not

make any serious attempt to prove its validity. The value of ρ appears to be the point at which

∞
∑

n=0
Cn(t ; 1)

n−1
∏

k=0

Bk (t ; 1) = 1. (3.119)

It can be easily shown that the component functions An(t ; v),Bn(t ; v) and Cn(t ; v) are analytic

for |t | <
p

2− 1 and |v | ≤ 1. To prove that ρ is indeed the dominant singularity of E (2)(t ),
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we also need to show that the various infinite sums featuring in its solution are convergent for

|t |<ρ′ for some ρ′ >ρ, and also that there is no other value of t with |t | ≤ ρ satisfying (3.119).

The complexity of these functions seems to make proving facts like these quite difficult.

It seems very likely that the generating function E (2)(t ) has countably many singularities in

C, and is thus not D-finite. For example, every Sn(t ; 1) term for n ≥ 0 appears in the generating

function, and these terms are singular when

t 2Sn−1(t ; 1) =
1± t

1∓ t
.

This equation will have different solutions for each n. However, these solutions do not lie on

the interval 0 < t <
p

2− 1, and thus the power series representation of Sn−1(t ; 1) is of limited

use.

We note here that, while it seems impossible to generate 2-sided perimeter walks without

using two extra variables (in addition to the length variable t ), the kernel (3.100) of the resulting

functional equation is quadratic in only one of those variables (and so, in a sense, that variable

is the only “true” catalytic variable). This suggests that there may in fact be a simpler solution

than the one we obtain above in Theorem 3.32. We have attempted to investigate this further,

but thus far all alternative methods to the one described above have proven futile.

Based on Monte Carlo studies by Tim Garoni [9], it has been conjectured that the mean

squared end-to-end distance of 2-sided perimeter walks of length n grows like O(n2), so that the

exponent ν = 1.

3-sided perimeter walks

Given the difficulty of solving 2-sided perimeter walks and then analysing their generating func-

tion, it should come as no surprise that we are unable to determine the exact solution of 3-sided

perimeter walks. We will present here the functional equations satisfied by generating functions

of 3-sided perimeter walks. We omit the proof, as the method used here is the same as for 2-sided

walks.

Define the generating functions

T (t ; u, v, w, x) =
∑

n,i , j ,k ,l≥0

tn,i , j ,k ,l t n u i v j wk x l

R(t ; u, v, w, x) =
∑

n,i , j ,k ,l≥0

rn,i , j ,k ,l t n u i v j wk x l

where tn,i , j ,k ,l is the number of n-step 3-sided perimeter walks ending on the north side of their

box, with

• distance i from the endpoint to the north-east corner of the box,

• distance j from the endpoint to the north-west corner of the box,
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Figure 3.11: 3-sided perimeter walks, ending on the north and east sides of their boxes, with the

distances i , j , k , l measured by the catalytic variables u, v, w, x indicated.

• distance k from the north-east corner of the box to the nearest occupied vertex on the east

side of the box, and

• distance l from the north-west corner of the box to the nearest occupied vertex on the

west side of the box.

Similarly, rn,i , j ,k ,l is the number of n-step 3-sided perimeter walks ending on the east side of

their box, with

• distance i from the endpoint to the north-east corner of the box,

• distance j from the north-east corner of the box to the nearest occupied vertex on the

north side of the box,

• total width j + k, and

• distance l from the north-west corner of the box to the nearest occupied vertex on the

west side of the box.

See Figure 3.11 for an illustration of these measurements for the two types of 3-sided perimeter

walks.

Proposition 3.35. The generating functions T (t ; u, v, w, x) and R(t ; u, v, w, x) satisfy the func-
tional equations
�

1− t w x −
t 2vw x

u − t v
−

t 2uw x

v − t u

�

T (t ; u, v, w, x) = 1−
t (w − 1)(x − 1)

1− t
−

t uw x

u − t v
T (t ; t v, v, w, x)

+ t xT (t ; t v, v, 1, x)−
t vw x

v − t u
T (t ; u, t u, w, x)+ t wT (t ; u, t u, w, 1)−

t 2u x(w − 1)

v − t u
T (t ; 0, v, 1, x)

+
t v x(w − 1)

v − t u
T (t ; 0, t u, 1, x)− t (w − 1)T (t ; 0, t u, 1, 1)−

t 2vw(x − 1)

u − t v
T (t ; u, 0, w, 1)

+
t uw(x − 1)

u − t v
T (t ; t v, 0, w, 1)− t (x − 1)T (t ; t v, 0, 1,1)+

t v2

v − t u
R(t ; t , v, v, x)

−
t 2uv

v − t u
R(t ; t , t u, v, x)+

t u2

u − t v
R(t ; t , u, u, w)−

t 2uv

u − t v
R(t ; t , t u, u, w) (3.120)
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and
�

1− t v −
t 2v

u − t
−

t 2uv

1− t u

�

R(t ; u, v, w, x) =
1

1− t u
−

t uv

u − t
R(t ; t , v, w, x)+ t wR(t ; t , w, w, x)

−
t 2u(v −w)

1− t u
R(t ; 0, 1, w, x)+

t x

1− t u
T (t ; t w, w, 1, x)−

t 2u x

1− t u
T (t ; t w, w, t u, x)

−
t (x − 1)

1− t u
T (t ; t w, 0, 1,1)+

t 2u(x − 1)

1− t u
T (t ; t w, 0, t u, 1). (3.121)

The generating function for 3-sided perimeter walks is then

E (3)(t ) = T (t ; 1, 1,1,1)+ 2R(t ; 1, 1,1,1)− 2R(t ; 0, 1,1,1).

While we are not able to solve these equations, they do enable us to generate relatively long

series in polynomial time. A numerical analysis strongly suggests that the dominant singularity

of E (3)(t ) is at the same point as E (2)(t ) (i.e. at t = ρ ≈ 0.399361698853), and is again a simple

pole. We estimate the amplitude to be approximately 6.33.

4-sided perimeter walks

It is possible to write down a functional equation for 4-sided perimeter walks, but the generating

functions involved would use even more catalytic variables than the 3-sided case, and so realis-

tically we have no hope of solving any such equation. For this reason we will only mention

numerical results.

As with 2-sided and 3-sided perimeter walks, the dominant singularity of unrestricted perime-

ter walks appears to be a simple pole at t = ρ ≈ 0.399361698853. The amplitude is expected to

be approximately 16.12. Monte Carlo studies by Garoni [9] suggest that the mean squared end-

to-end distance of unrestricted perimeter walks grows like O(n2).

2-sided perimeter polygons by perimeter

Since 1-sided perimeter polygons are the same as the trivial case of 1-sided prudent polygons,

we now turn our attention to 2-sided perimeter polygons, enumerated by half-perimeter. Such

objects are either prudent or not; since we know the half-perimeter generating function of 2-

sided prudent polygons (Lemma 3.11), we only need to consider those polygons which contain

a non-prudent step.

We will consider the generating function

C (t ; u) =
∑

n,i≥0

cn,i t n u i ,

where cn,i is the number of 2-sided perimeter polygons ending at (0,1) in a counter-clockwise

direction which contain at least one non-prudent step, with half-perimeter n and rightmost col-

umn of height i − 1. (Equivalently, i is the distance from the north-east corner of the bounding

box to the farthest occupied vertex on the east side of the box.) In Figure 3.12 we provide an

illustration of a 2-sided perimeter polygon together with the distance i .
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i

Figure 3.12: A 2-sided perimeter polygon, as counted by C (t ; u), with the distance i measured

by the catalytic variable u indicated.

Lemma 3.36. The generating function C (t ; u) satisfies the functional equation
 

1+
t u

1− u
−

t 2u

1− t u

!

C (t ; u) =
t u2

1− u
bB(t ; 1)−

t u(1− t )

(1− u)(1− t u)
bB(t ; u)+

t u2

1− u
C (t ; 1), (3.122)

where
bB(t ; u) =

∑

n,i≥0

bbn,i t n u i

is the generating function of bargraphs with rightmost column of height at least 2, with t conjugate

to half-perimeter and u conjugate to the height of the last column.

Proof. We begin by noting that with only minor modifications it is easy to use Schwerdtfeger’s

method [105] to show that

bB(t ; u) =
t 2u2(1− t − t u + t 2)

1− u + t u2− t 2u
·

V − 1

1− tV
−

t 3u2(u − t )

1− u + t u2− t 2u
, (3.123)

where

V ≡V (t ) =
1+ t 2−

Æ

(1− t )(1− 3t − t 2− t 3)

2t

is the power series root of 1−V + tV − t 2V = 0.

The only possibility for a non-prudent step for this class of polygons is a step west towards

the origin. After some number of such steps, the walk can take a north step, and can then

only take west steps to the final point (0,1). So these polygons can be viewed as bargraphs with

a piece (i.e. a row of cells) taken out of the north-east corner. We construct them by adding

columns to the right side of other polygons; in particular, we can add a column to a bargraph

with rightmost column of height at least 2, or to an existing perimeter polygon. For the former

case, the generating function is given by
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∑

n,i≥0

bbn,i t n · t
 

i
∑

l=2

u l + u i
∞
∑

l=1

u l t l

!

= t
∑

n,i≥0

bbn,i t n

 

u(u − u i )

1− u
+

t u i+1

1− t u

!

=
t u

1− u
[u bB(t ; 1)− bB(t ; u)]+

t 2u

1− t u
bB(t ; u) (3.124)

Using exactly the same method, the polygons generated by adding a column to an existing

perimeter polygon have the generating function

t u

1− u
[uC (t ; 1)−C (t ; u)]+

t 2u

1− t u
C (t ; u). (3.125)

Adding (3.124) and (3.125) gives C (t ; u), and the lemma follows. �

From here, the kernel method can be applied to (3.122).

Theorem 3.37. The generating function C (t ; 1) has the solution

C (t ; 1) =
t 3V 2(1− t )2

(1− tV )(1+ t 2− 2tV )
+ t 2−

t (1− t )(V − 1)

1− tV
, (3.126)

where V ≡ V (t ) is as defined in the proof of Lemma 3.36. The half-perimeter generating function

for 2-sided perimeter polygons is then

EP (2)(t ) = 2C (t ; 1)+ 4B(t )

= 1− 4t + t 2+
(−1+ 5t + t 2+ t 3)

p
1− t

p

1− 3t − t 2− t 3
(3.127)

= 4t 2+ 8t 3+ 22t 4+ 64t 5+ 192t 6+ 588t 7+ 1828t 8+ · · ·

where B(t ) = t (V − 1)/(1− tV ) is the half-perimeter generating function of bargraphs.

Proof. The substitution u = V cancels the kernel on the LHS of (3.122), enabling us to write

C (t ; 1) in terms of bB(t ; 1) and bB(t ;V ). Simplifying then gives (3.126).

The generating function of 2-sided perimeter polygons ending at (0,1) is C (t ; 1) + 2B(t ), as

we have to account for the prudent polygons ending at (0,1) in a counter-clockwise direction, as

well as the polygons which walk clockwise. By Schwerdtfeger [105] the former class is counted

by B(t ); it is not hard to see that the polygons in the latter class are just vertically-oriented

bargraphs. We finally multiply by two to account for those polygons ending at (1,0). �

Corollary 3.38. The dominant singularity of EP (2)(t ) is a pole of order 1/2 at t = σ ≈ 0.296, a

root of 1− 3σ −σ2−σ3 = 0. Thus the number of 2-sided perimeter polygons of half-perimeter n is

asymptotically

e p (2)n ∼ αλ
n n−1/2 (3.128)

where λ= σ−1 ≈ 3.38 and α≈ 0.2623.
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Note that the location of the singularity, at t = σ , is the same point as for 2-sided prudent

polygons (see Lemma 3.11), but with a different exponent.

3-sided perimeter polygons by perimeter

Unsurprisingly, the progression from 2-sided to 3-sided perimeter polygons brings many of the

same problems as for perimeter walks. In particular, we can derive functional equations for the

generating functions, but these require at least three catalytic variables. The complexity of this

class of polygons seems to require the use of several sets of generating functions. For illustrative

purposes we present the functional equations for one such set, namely those polygons which end

at (−1,0) in a counter-clockwise direction and contain the north-west corner of their bounding

box.

We define two classes of these polygons: X contains polygons for which the removal of the

top row does not change the width of the polygon or leave two or more disconnected pieces,

and Y contains those polygons not inX . These two classes have the generating functions

X (t ; w, v, x) =
∑

n,i , j ,k≥0

xn,i , j ,k t n w i v j xk

and

Y (t ; w, v, x) =
∑

n,i , j ,k≥0

yn,i , j ,k t n wk v j xk

where xn,i , j ,k is the number of 3-sided perimeter polygons inX , with

• half-perimeter n,

• distance i from the north-west corner of the box to the farthest occupied vertex on the

north side of the box,

• total width i + j , and

• distance k from the north-east corner of the box to the nearest occupied vertex on the east

side of the box.

Similarly, yn,i , j ,k is the number of 3-sided perimeter polygons in Y , with

• half-perimeter n,

• distance i from the north-west corner of the box to the farthest occupied vertex on the

north side of the box,

• total width i + j , and
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Figure 3.13: 3-sided perimeter polygons, in X and Y respectively, with the distances i , j , k

measured by the catalytic variables w, v, x indicated.

• distance k+1 from the north-east corner of the box to the farthest occupied vertex on the

east side of the box.

See Figure 3.13 for examples of polygons inX and Y , together with the distances measured by

the catalytic variables.

Proposition 3.39. The generating functions X (t ; w, v, x) and Y (t ; w, v, x) satisfy the functional

equations

 

1+
t w x

v −w
+

t 2w x

v − t w

!

X (t ; w, v, x) =
t w x

v −w
X (t ; v, v, x)−

t v x

v − t w
X (t ; w, t w, x)

+ tX (t ; w, t w, 1)+
t w x2

v −w
Y (t ; v, v, 1)−

t wv x2(1− t )

(v −w)(v − t w)
Y (t ; w, v, 1)

+
t (v − t w − v x2)

v − t w
Y (t ; w, t w, 1)+

t w x(1− x)

v −w
Y (t ; v, 0, 1)−

t v x(1− x)

v −w
Y (t ; w, 0, 1) (3.129)

and
 

1+
t v x

1− x
−

t 2v x

1− t x

!

Y (t ; w, v, x) = t 2w +
t v x

1− x
Y (t ; w, v, 1)+

t w

1− x
Y (t ; w, 0, 1)

−
t w x(1− t )

(1− x)(1− t x)
Y (t ; w, 0, x)−

t 2v x

1− t x
Y (t ; w, 0, 0)+

t 2w

1− t x
X (t ; w, t w, 1)

−
t 2w

1− t x
X (t ; w, t w, t x)+ t 2wX (t ; w, 0, 0)+ t 2wY (t ; w, t w, 1). (3.130)

We omit the proof, but the recursive constructions work as follows:

• A polygon inX can be constructed by

– adding a row of width i to the top of a polygon inX or Y of width ≥ i .

• A polygon in Y is either a single square, or can be constructed by

– adding a column to the right side of a polygon in Y ,
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– adding a row of width i to a polygon inX of width i , plus a column of height ≥ 1

to the right hand side (while remaining self-avoiding, of course), or

– adding a row of width i + 1 to the top of a polygon in Y of width i .

While we are unable to solve these equations (or those satisfied by the other subclasses of

3-sided perimeter polygons), we can use them to generate relatively long (approx. 170 terms)

series. A numerical analysis of these series then leads us to conjecture the asymptotic form of

e p (3)n , the number of 3-sided perimeter polygons with half-perimeter n.

Conjecture 3.40. The number of 3-sided perimeter polygons with half-perimeter n is asymptotically

e p (3)n ∼ κω
n n−1/2,

whereω ≈ 4.10 is the same growth rate as for 3-sided prudent polygons, as described in Lemma 3.12,

and κ is a positive constant.

4-sided perimeter polygons by perimeter

For the full, unrestricted case of 4-sided perimeter polygons, we can write down (very compli-

cated) recursive constructions, and use these to generate series. Unfortunately we are only able

to compute data for polygons of half-perimeter up to 25, which is not nearly large enough for us

to obtain accurate estimates of growth rates or exponents. However, our (very rough) estimate

for the exponential growth rate is 4.41, which along with the results for 2- and 3-sided polygons,

leads us to tentatively conjecture that it is the same value as for 4-sided prudent polygons [47].

As for the exponent, the series is simply too short for us to obtain any reliable estimate.

2-sided perimeter polygons by area

As we did with prudent polygons, we now turn our attention to the enumeration of perimeter

polygons by area. The case of 1-sided polygons is trivial (and the same as 1-sided prudent poly-

gons), so we begin with 2-sided perimeter polygons. The interesting case is again those polygons

ending at (0,1) in a counter-clockwise direction. The non-prudent polygons are then very easy

to construct: we simply take any bargraph whose rightmost column has height at least two, and

attach another bargraph on the right side, with the top of the second bargraph one unit lower

than that of the first bargraph.

The area generating function of bargraphs is

B(q) =
q

1− 2q
,

and so the generating function of bargraphs with rightmost column of height at least two is

bB(q) =
q2

1− 2q
.
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So the area generating function of 2-sided perimeter (and not prudent) polygons ending at (0,1)

in a counter-clockwise direction is

bB(q)B(q) =
q3

(1− 2q)2
. (3.131)

Lemma 3.41. The area generating function of 2-sided perimeter polygons is

EA(2)(q) =
∑

n≥1
ea(2)n qn =

2q(2− 4q + q2)

(1− 2q)2
(3.132)

and so

ea(2)n =







4 n = 1

(n+ 6)2n−2 n ≥ 2.

Proof. Polygons ending at (0,1) in a counter-clockwise direction are either prudent (and so have

generating function B(q)), or are non-prudent and then have the generating function given

in (3.131). Polygons ending at (0,1) clockwise are just vertically-oriented bargraphs, and so

these also have generating function B(q). By symmetry, polygons ending at (1,0) have the same

generating function as those ending at (0,1). So the overall generating function is

2

 

q3

(1− 2q)2
+ 2B(q)

!

=
2q(2− 4q + q2)

(1− 2q)2
. �

3-sided perimeter polygons by area

The enumeration of 3-sided perimeter polygons by area is not as complicated as the enumera-

tion by perimeter, but unfortunately we are still not able to solve the functional equations. We

present here the functional equations for the same subset of 3-sided perimeter polygons we de-

scribed earlier – namely, those which end at (−1,0) in a counter-clockwise direction and contain

the north-west corner of their box. We subdivide these polygons slightly differently to before:

X remains the same, and contains polygons for which the removal of the top row does not

change the width of the polygon or leave two or more disconnected pieces; Y is now those

polygons not inX which contain the north-east corner of their bounding box; and Z contains

all polygons not inX or Y .

Define the generating functions

X (q ; w, v) =
∑

n,i , j≥0

xn,i , j q
n w i v j

Y (q ; w, v) =
∑

n,i , j≥0

yn,i , j q
n w i v j

and

Z(q ; w) =
∑

n,i≥0

zn,i qn w i

where xn,i , j is the number of 3-sided perimeter polygons inX , with
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• area n,

• width i , and

• distance j from the north-east corner of the box to the nearest occupied vertex on the east

side of the box.

Similarly, yn,i , j is the number of 3-sided perimeter polygons in Y , with

• area n,

• width i , and

• distance k+1 from the north-east corner of the box to the farthest occupied vertex on the

east side of the box.

Finally, zn,i is the number of 3-sided perimeter polygons in Z , with

• area n, and

• width i .

Proposition 3.42. The generating functions X (q ; w, v),Y (q ; w, v) and Z(q ; w) satisfy the equa-

tions
�

1−
qv

1− q

�

X (q ; w, v) =X (q ; qw, 1)−
v

1− q
X (q ; qw, v)+

qv

1− q
Y (q ; w, 1)

+
1− q − v

1− q
Y (q ; qw, 1)+

qv2

1− q
Z(q ; w)+

1− q − v2

1− q
Z(q ; w) (3.133)

Y (q ; w, v) = qw +
qw

1− qv
X (q ; qw, 1)−

qw

1− qv
X (q ; qw, qv)+ qwX (q ; qw, 0)

+ qwY (q ; qw, 1)+ qwZ(q ; qw)+
qw

1− qv
Y (q ; w, 1) (3.134)

and
�

1−
qw

1− q

�

Z(q ; w) =
qw

1− q
Y (q ; w, 1)−

qw

1− q
Y (q ; w, 0). (3.135)

We again omit the proof, but the constructions work as follows:

• A polygon inX can be constructed by

– adding a row of width i to the top of any polygon of width ≥ i .

• A polygon in Y is either a single square, or can be constructed by

– adding a column to the right side of a polygon in Y ,
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– adding a row of width i to the top of a polygon in X of width i , plus a column of

height ≥ 1 to the right side (while remaining self-avoiding), or

– adding a row of width i + 1 to the top of a polygon in Y or Z of width i .

• A polygon in Z can be constructed by

– adding a column to the right side of a polygon in Y or Z , with the top of the new

column one unit lower than the north side of the box.

We can use this recursive construction to generate a long series (800 terms) for 3-sided perime-

ter polygons by area. It is clear that the exponential growth rate is 2, just as it is for prudent

polygons. Our best estimate for the exponent is 4.242, so that we have the approximate result

ae (3)n ∼ κ2n n4.242

for some positive constant κ. We note that while this estimate for the exponent is indistinguish-

able from 3
p

2, we have no compelling reason to believe that to be the true value.

4-sided perimeter polygons by area

We have generated 44 terms in the sequence of 4-sided perimeter polygons, enumerated by area.

We are confident that the growth rate is once again 2, but our estimate for the exponent is very

imprecise. Our best estimate is that

ae (4)n ∼ κ2n n6.2

for a positive constant κ.

3.3.2 Quasi-prudent walks and polygons

As we mentioned at the start of this section, we can consider perimeter walks to be a generali-

sation of prudent walks, which are in turn a generalisation of directed walks. In this subsection

we will briefly describe a further generalisation of all of these, namely quasi-prudent walks.

We believe that quasi-prudent walks were proposed by Jim Propp in response to a seminar

on prudent walks. On the square lattice, these are SAWs for which, after every step, it is possible

to draw a semi-infinite ray parallel to a lattice axis from the endpoint without intersecting the

walk. Equivalently, quasi-prudent walks are always able to “escape” to infinity13 by taking an

infinite sequence of steps in the same lattice direction.14

Clearly prudent and perimeter walks are also quasi-prudent – a ray drawn from the endpoint,

perpendicular to the side of the bounding box will suffice. However, in general, quasi-prudent

13In the sense of a lattice – perhaps “move infinitely far from the origin” is more precise.
14This definition also makes sense for walks on the triangular lattice, but is more complicated on the honeycomb

lattice, where walks cannot take consecutive collinear steps. We will explore a related problem in Section 3.5.
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Figure 3.14: A quasi-prudent walk, before and after a step which adds points to the hull (the

dots). The perpendicular bisector of that step is also indicated.

walks need not end on their bounding box; this means that the constructions involving inflating

steps that we used for prudent and perimeter walks will no longer be of use here.

Instead, Mireille Bousquet-Mélou has suggested the use of a hull. It is defined as follows:

• The empty walk has no hull. (That is, its hull is the empty set.)

• After each step of the walk, consider the perpendicular bisector of that last step. WLOG

assume the step was in the positive x direction, say from (x0, y0) to (x0+ 1, y0). Then the

bisector is the line x = x0+ 1/2.

• If the bisector does not cross any other steps of the walk, the hull does not change. (That

is, no new points are added to the hull.)

• Otherwise, say the bisector does cross another step of the walk, between vertices (x0, y0+

δ) and (x0+ 1, y0+δ) with δ > 0. Then every vertex (x, y) such that

x ∈ {x0, x0+ 1} and y0 ≤ y ≤ y0+δ

is added to the hull. (If δ < 0 then the above inequalities should be reversed in the obvious

way.) This process is illustrated in Figure 3.14.

• If the hull is now not connected via edges of the lattice, there will be a sub-path of the

walk which connects the two pieces of the hull. Add the vertices of this sub-path to the

hull. This process is illustrated in Figure 3.15.

We will denote the hull of a quasi-prudent SAW ω by H (ω). See Figures 3.14 and 3.17 for

examples of a quasi-prudent walks and their hulls.

Lemma 3.43. The endpoint of a quasi-prudent walk is always adjacent to an unoccupied vertex

which is not in its hull.

Proof. Assume for a contradiction that a quasi-prudent walkω has ended with a step from v ′ =

(x0−1, y0) to v = (x0, y0)with all the vertices a = (x0+1, y0), b = (x0, y0+1) and c = (x0, y0−1)
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Figure 3.15: Another quasi-prudent walk, before and after a step which adds points to the hull

(the dots). In this case, after checking the perpendicular bisector of the new step (the centre

figure) and adding points between the steps it crosses, the hull was disconnected, and so we add

points from the walk between the two pieces to connect the hull.

ω′

ω′′
a

a+

a−

b

c

Figure 3.16: An illustration of the argument used in the proof of Lemma 3.43. The subwalkω′′

must contain a west step (indicated), but such a step cannot be quasi-prudent.

either occupied by ω or in the hull of ω. (If instead the last step was vertical or in the negative

x direction, we can rotate/reflect the walk as necessary.) Clearly if they are all occupied by ω

then this would contradict the quasi-prudent condition, so at least one must be unoccupied.

First, say there is a ray from v to infinity in the positive x direction (i.e. through a) which

does not intersect ω. So a is unoccupied, but in the hull. This situation can only occur there

if there are vertices both above and below a which are in ω. We denote these by vertices by

a+ = (x0+ 1, y0+δ
+) and a− = (x0+ 1, y0−δ−), with δ+,δ− > 0. Then a+ and a− must be

connected by a subwalkω′ ofω which cannot cross the ray from v to infinity in the positive x

direction, and one of a+ and a− must also be connected to v ′ via a subwalk ω′′. But then there

must be at least one west step inω′′, and a quick sketch makes it clear that after such a step, the

walk would have been cut off in the north, west and south directions by ω′, contradicting the

quasi-prudent condition. See Figure 3.16 for an illustration.
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Instead, suppose there is a ray from v to infinity in the positive y direction (i.e. through

b ) which does not intersect ω. So b is unoccupied, but in the hull. Then there are vertices

b+ = (x0 +δ
+, y0 + 1) and b− = (x0 −δ−, y0 + 1), with δ+,δ− > 0, which have been visited

by ω. So there is a subwalk ω′ of ω which connects b+ and b− and does not pass through the

ray from v to infinity in the positive y direction, and another subwalk ω′′ which connects one

of b+ and b− to v ′. Then ω′′ must contain a south step, and after such a step the walk would

have been cut off in the west, south and east directions by ω′, contradicting the quasi-prudent

condition.

The argument for the final case, when there is a non-intersecting ray from v to infinity in

the negative y direction, is simply a reflection of the previous case.

So now there cannot be a ray from v in any direction which does not not intersect ω, a

contradiction of the quasi-prudent condition. �

We define the boundary of the hull of a quasi-prudent walk ω to be the vertices in H (ω)
which are adjacent to at least one vertex not inH (ω).

Corollary 3.44. The endpoint of a quasi-prudent walk ω must either lie on the boundary of the

hull of ω, or not be in the hull at all.

So we see that, in some respects, the hull of a quasi-prudent walk functions like the bounding

box of a prudent or perimeter walk – a quasi-prudent walk either ends on the boundary of its

hull, or has stepped off its hull and not added any more vertices since. The second case is not

as complicated as it sounds, since a walk that has not added any vertices to its hull must be very

simple (in particular, it must be fully directed). This gives us a way to classify quasi-prudent

walks in a similar manner to prudent and perimeter walks.

First, we define 8 (not necessarily distinct) points on the hull of a walkω (assuming that the

hull is non-empty):

N+(ω) =max
x

max
y
{(x, y) ∈H (ω)} N−(ω) =min

x
max

y
{(x, y) ∈H (ω)}

E+(ω) =max
y

max
x
{(x, y) ∈H (ω)} E−(ω) =min

y
max

x
{(x, y) ∈H (ω)}

S+(ω) =max
x

min
y
{(x, y) ∈H (ω)} S−(ω) =min

x
min

y
{(x, y) ∈H (ω)}

W +(ω) =max
y

min
x
{(x, y) ∈H (ω)} W −(ω) =min

y
min

x
{(x, y) ∈H (ω)}

Then we can define 8 “sides” of the hull (some or all of these might be a single vertex):

N (ω) = {(x, y) : y =N+y ,N−x ≤ x ≤N+x }

E(ω) = {(x, y) : x = E+x , E−y ≤ y ≤ E+y }

S(ω) = {(x, y) : y = S+y , S−x ≤ x ≤ S+x }

W (ω) = {(x, y) : x =W +
x ,W −

y ≤ y ≤W +
y }
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N+N−

E+

E−

S+S−

W −

W +

Figure 3.17: A quasi-prudent walk with its hull (the dots) and ‘corner’ points indicated.

N E(ω) = {(x, y) ∈H (ω) : N+x ≤ x ≤ E+x , E+y ≤ y ≤N+y , (x + 1, y + 1) /∈H (ω)}

SE(ω) = {(x, y) ∈H (ω) : S+x ≤ x ≤ E−x , S+y ≤ y ≤ E−y , (x + 1, y − 1) /∈H (ω)}

SW (ω) = {(x, y) ∈H (ω) : W −
x ≤ x ≤ S−x , S−y ≤ y ≤W −

y , (x − 1, y − 1) /∈H (ω)}

NW (ω) = {(x, y) ∈H (ω) : W +
x ≤ x ≤N−x ,W +

y ≤ y ≤N−y , (x − 1, y + 1) /∈H (ω)}

where N+x is the x-coordinate of N+(ω), etc. In Figure 3.17 we identify the 8 “corner” points

on the hull of a quasi-prudent walk.

We can now define a sub-classification of quasi-prudent walks according to the location of

their endpoint in relation to the hull.

• A quasi-prudent walkω is 1-sided if, after every step, the endpoint of the current walkω′

is in E(ω′) or not inH (ω′).

• A quasi-prudent walkω is 2-sided if, after every step, the endpoint of the current walkω′

is in E(ω′)∪N E(ω′) or not inH (ω′).

• A quasi-prudent walkω is 3-sided if, after every step, the endpoint of the current walkω′

is in E(ω′)∪N E(ω′)∪N (ω′) or not inH (ω′).

• We continue in this fashion, adding more sides in a counter-clockwise direction, up to

8-sided or unrestricted quasi-prudent walks.

Unfortunately, while this sub-classification looks pleasing on paper, it turns out to be largely

useless; the only subclass of quasi-prudent walks that we have been able to solve (or even obtain

functional equations for) is the 1-sided case. In this subsection, then, we will just solve the 1-sided

case and mention numerical results for unrestricted quasi-prudent walks.
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1-sided quasi-prudent walks

These are sufficiently simple that we can construct them from directed walks, though we will

ultimately still need to use the kernel method. There are several distinct possibilities (we remind

the reader that a walk is fully directed if it steps in at most two directions on the lattice):

• Any fully directed walk has no hull and is thus classified as 1-sided.

• A NES-directed walk containing all three allowed steps (i.e. one that actually has a hull)

ends on the east side of its hull.

• A NW-directed walk containing at least one west step can be followed by a north and then

east step, and will then have a non-empty hull. After this we can attach a NES-directed

walk (maintaining self-avoidance, of course).

• Similarly, a SW-directed walk containing at least one west step can be followed by a south

and then east step, and then a NES-directed walk.

The third case above is the only one we need to address; the first two are already solved, and the

fourth is simply a reflection of the third. See Figure 3.18 for an illustration of this type of walk.

Now such a walk contains a first west step, say from (0, y0) to (−1, y0), and a last east step,

say (x1 − 1, y1) to (x1, y1). Then let x ′ = min{0, x1}. If we remove all steps to the east of x =

x ′, as well as any vertical steps along the line x = x ′, then we are left with a particular kind

of column-convex polygon [16] which is missing its easternmost vertical edges. Specifically,

these are column-convex polygons whose southern boundary is a NW-directed walk and whose

northern boundary is a NES-directed walk. We will solve the perimeter generating function

of such polygons and then use it to compute the generating function for this class of 1-sided

quasi-prudent walks.

Define the generating function

P (t ; u, x) =
∑

n,i , j≥0

pn,i , j t n u i x j ,

where pn,i , j is the number of column-convex polygons with the following properties:

• the southern boundary is a NW-directed walk;

• the northern boundary is a NES-directed walk;

• the perimeter15 is n;

• the height of the westernmost column is i ; and

• the height of the easternmost column is j .
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i

j

Figure 3.18: A 1-sided quasi-prudent walk with its hull indicated, and the associated FP-polygon

with the distances i and j indicated.

For lack of a better name we will call these FP-polygons (Fully-directed Partially-directed poly-

gons). See Figure 3.18 for the FP-polygon corresponding to a given 1-sided quasi-prudent walk.

Lemma 3.45. The generating function P (t ; u, x) satisfies the functional-differential equation

 

1−
t 2u2

(1− u)2
+

t 4u2

(1− u)(1− t 2u)

!

P (t ; u, x) =
t 4u x

1− t 2u x
−

t 2u2(1− t 2)

(1− u)2(1− t 2u)
P (t ; 1, x)

+
t 2u

1− u

�

∂

∂ u
P (t ; u, x)

�

�

�

�

�

�

u=1

. (3.136)

Proof. We construct FP-polygons recursively by adding successive columns to the left side of

existing FP-polygons.

• Polygons comprising only a single column have the generating function

t 4u x

1− t 2u x
. (3.137)

• Polygons whose leftmost column is not longer than their second-leftmost column have

the generating function

∑

n,i , j≥0

pn,i , j t n x j · t 2

 

i−1
∑

k=0

i−k
∑

l=1

u l

!

= t 2
∑

n,i , j≥0

pn,i , j t n x j ·
u(i − u − i u + u i+1)

(1− u)2

=
t 2u2

(1− u)2
[P (t ; u, x)− P (t ; 1, x)]+

t 2u

1− u

�

∂

∂ u
P (t ; u, x)

�

�

�

�

�

�

u=1

. (3.138)

• Polygons whose leftmost column is longer than their second-leftmost column have the

15Not the half-perimeter.

111



generating function

∑

n,i , j≥0

pn,i , j t n x j · t 2

 

i
∑

k=1

uk
∞
∑

l=1

t 2l u l

!

= t 2
∑

n,i , j≥0

pn,i , j t n x j ·
t 2u2(1− u i )

(1− u)(1− t 2u)

=
t 4u2

(1− u)(1− t 2u)
[P (t ; 1, x)− P (t ; u, x)]. (3.139)

Since all polygons are described by exactly one of the above three cases, adding (3.137), (3.138)

and (3.139) gives P (t ; u, x), and the lemma follows. �

For every other polygon and walk model that we have examined in this chapter, the kernel of

the functional equation is either quadratic in one or more of the catalytic variables (e.g. (3.122)),

or is of no use when solving the equation (e.g. (3.133)). Fortunately, (3.136) is different – the

kernel

K(t ; u) = 1−
t 2u2

(1− u)2
+

t 4u2

(1− u)(1− t 2u)
is cubic in u, and two of the three roots of K(t ; u) = 0 are power series in t . This enables us

to solve for P (t ; 1, x) directly from (3.136), without having to find another equation satisfied by

P (t ; 1, x) and ∂
∂ u P (t ; u, x)|x=1.

Lemma 3.46. Denote the two power series roots of K(t ; u) = 0 by M ≡M (t ) and N ≡N (t ), with

M = 1+ t + t 2+ t 3+
3

2
t 4+

5

2
t 5+

9

2
t 6+

65

8
t 7+ 15t 8+O(t 9) (3.140)

N = 1− t + t 2− t 3+
3

2
t 4−

5

2
t 5+

9

2
t 6−

65

8
t 7+ 15t 8+O(t 9). (3.141)

Then

P (t ; 1, x) =
−t 2x(1− t 2x)(1−M )(1− t 2M )(1−N )(1− t 2N )

(1− t 2)(1− t 2xM )(1− t 2xN )(1− t 2M N )
(3.142)

= t 4x + t 6(x + x2)+ t 8(2x + 3x2+ x3)+ t 10(6x + 7x2+ 6x3+ x4)+O(t 12)

Proof. Substituting u =M and u =N into (3.136) gives two independent equations in P (t ; 1, x)

and ∂
∂ u P (t ; u, x)|x=1, which can then be combined to obtain the solution to P (t ; 1, x). �

From here, the generating function for 1-sided quasi-prudent walks can be easily calculated.

Theorem 3.47. The generating function Q (1)(t ) for 1-sided quasi-prudent walks is given by

Q (1)(t ) =
1− t − t 2− 3t 3− 2t 4

(1− t )(1− 2t )(1− 2t − t 2)
+

2(1+ t )(1− 2t − t 3)

(1− t )2(1− 2t )(1− 2t − t 2)
R(t ; 1)

−
2(1− 2t − t 3)

(1− t )2(1− 2t )(1− 2t − t 2)
R(t ; t )

(3.143)

= 1+ 4t + 12t 2+ 32t 3+ 80t 4+ 198t 5+ 482t 6+ 1172t 7+ 2832t 8+O(t 9)
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where

R(t ; x) =
∑

n, j≥0

rn, j t n x j = P (t ; 1, t−1x)

=
−t x(1− t x)(1−M )(1− t 2M )(1−N )(1− t 2N )

(1− t 2)(1− t xM )(1− t xN )(1− t 2M N )
,

and M and N are as defined in Lemma 3.46.

Proof. The original motivation for solving the FP-polygon generating function P (t ; 1, x) was

that we obtained FP-polygons after deleting certain edges from 1-sided quasi-prudent walks. We

now wish to reverse this process and add those edges back in.

Given an FP-polygon p, we begin by removing its rightmost vertical edges. The generating

function of all such objects is exactly R(t ; x), where x is still conjugate to the height of the

rightmost column. Now p will have precisely two rightmost vertices a and b , which were

respectively the north-east and south-east corners of its rightmost column. To reverse the edge-

deletion procedure, we will attach a NES-directed walk w1 to a and/or a SE-directed walk w2 to

b , subject to the constraint that w1 and w2 cannot both contain an east step.

• If w2 does contain an east step then w1 cannot. The generating function of all possible w2

walks is then
2t

1− 2t
−

t

1− t
=

t

(1− t )(1− 2t )
,

and so the generating function of 1-sided quasi-prudent walks obtained in this fashion is

t

(1− t )(1− 2t )

∑

n, j≥0

rn, j t n ·







j−1
∑

l=0

t l +
∞
∑

l=1

t l






.

(The pair of sums over l correspond to w1 containing south and north steps respectively.)

=
t

(1− t )(1− 2t )

∑

n, j≥0

rn, j t n ·
 

1− t j

1− t
+

t

1− t

!

=
t (1+ t )

(1− t )2(1− 2t )
R(t ; 1)−

t

(1− t )2(1− 2t )
R(t ; t ). (3.144)

• Otherwise, w2 does not contain any east steps. The generating function of possible w2

walks is then just
1

1− t
,

and so the generating function of 1-sided quasi-prudent walks obtained in this fashion is

1

1− t

∑

n, j≥0

rn, j t n ·







j−1
∑

l=0

t l +
∞
∑

l=1

t l






·
�

1+
t (1+ t )

1− 2t − t 2

�

.
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(The pair of sums over l correspond to w1 starting with south or north steps respectively.

The last factor is the generating function of the NES-directed walks which can then be

attached.)

=
1

1− t

∑

n, j≥0

rn, j t n ·
 

1− t j

1− t
+

t

1− t

!

·
� 1− t

1− 2t − t 2

�

=
1+ t

(1− t )(1− 2t − t 2)
R(t ; 1)−

1

(1− t )(1− 2t − t 2)
R(t ; t ). (3.145)

Adding (3.144) and (3.145) gives the generating function for the 1-sided quasi-prudent walks

generated from FP-polygons. We then need to multiply this by two to account for those walks

which start with a SW-directed walk and then turn south and continue as a NES-directed walk.

We finally need to account for the directed walks which are also 1-sided quasi-prudent walks.

These include NES-directed walks, which have generating function

1+ t

1− 2t − t 2
,

and the NW- and SW-directed walks which are not also NES-directed, which have generating

function
t (1+ 2t )

(1− t )(1− 2t )
.

Adding all these generating functions together gives the result of the theorem. �

By inspection it is clear that Q (1)(t ) is algebraic. It is straightforward to verify that the

dominant singularity of Q (1)(t ) is a simple pole at t =
p

2− 1 = 0.414 . . .. The roots M and

N are analytic on |t | < τ where τ = 0.462 . . . is a root of 4− 16τ2 − 12τ4 − 3τ6 = 0, and all

of the values of t which cancel the denominators of R(t ; 1) or R(t ; t ) are outside the region

|t | ≤
p

2− 1.

Corollary 3.48. The number q (1)n of 1-sided quasi-prudent walks of length n is asymptotically

q (1)n ∼ κ(1+
p

2)n ,

where κ= 2.38551 . . ..

Unrestricted quasi-prudent walks

The result of Corollary 3.48 is somewhat disappointing, as it shows that for the only class of

quasi-prudent walks that we can solve exactly, the exponential growth rate is the same as for

partially directed walks and far less than even that of 2-sided prudent walks. The problem seems

to be that, while the notion of the hull is useful for devising a sub-classification of quasi-prudent

walks, its irregular shape means that it offers little assistance when trying to recursively generate

such walks.
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To study quasi-prudent walks of greater generality than the 1-sided case, we then have to

resort to numerical studies. We have used a backtracking algorithm to generate walks of length

up to 32, and we find that asymptotically the number of 8-sided (unrestricted) quasi-prudent

walks of length n is

q (8)n ∼ κµ
n n g ,

where µ≈ 2.609 and g ≈ 1.0, and κ is a positive constant.

Tim Garoni [9] has performed a Monte Carlo study of very long quasi-prudent walks (up to

10000 steps), and predicts that the mean squared end-to-end distance of quasi-prudent walks of

length n is asymptotically αn2 for a constant α. Equivalently, he conjectures that the exponent

ν = 1 for quasi-prudent walks.

1-sided quasi-prudent polygons by perimeter

As with prudent and perimeter walks, we can define a k-sided quasi-prudent polygon to be a

k-sided quasi-prudent walk which ends at a vertex adjacent to the start of the walk. We can

compute the half-perimeter generating function of 1-sided quasi-prudent polygons, but have not

made any study of the more general cases.

Fortunately, most of the work is already done – the generating function can be obtained

with only minor modifications to the function R(t ; x) we calculated in Theorem 3.47.

Lemma 3.49. The half-perimeter generating function for 1-sided quasi-prudent polygons is given by

QP (1)(t ) =
2(1− 2t + 2t 2)

(1− t )2
R(
p

t ;
p

t )+
2t 3/2

1− t

�

∂

∂ x
R(
p

t ; x)
�

�

�

�

�

�

x=
p

t

+
2t 2

1− t
(3.146)

= 4t 2+ 8t 3+ 24t 4+ 80t 5+ 284t 6+ 1052t 7+ 4020t 8+O(t 9).

Proof. There are three main cases to consider:

• The NES-directed walks which form polygons are trivial – they are just comprised of a

single column above or below the x-axis, and have the generating function

2t 2

1− t
. (3.147)

• The walks which do not step to the east of the y-axis are exactly the FP-polygons (and their

reflections) we considered in Lemmas 3.45 and 3.46. Their perimeter generating function

is 2P (t ; 1, 1) = 2R(t ; t ), and so the half-perimeter generating function is 2R(
p

t ;
p

t ).

• The non-trivial walks which do step east of the y-axis are FP-polygons (and their reflec-

tions) with a column attached to the right side, with the constraint that the bottom of the

new column is no higher than the bottom of the FP-polygon. (For the reflections, the top
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of the new column must be no lower than the top of the FP-polygon.) Their generating

function is thus

2

1− t

∑

n, j≥0

rn, j
p

t
n · t







j−1
∑

l=0

p
t

lp
t

j−l +
∞
∑

m=1

p
t

mp
t

j+m







(The sum over l corresponds to the cases when the top of the new column is no higher

than the top of the FP-polygon’s rightmost column; the sum over m covers the other

cases.)

=
2t

1− t

∑

n, j≥0

rn, j
p

t
n






j
p

t
j +
p

t j+2

1− t







=
2t 3/2

1− t

�

∂

∂ x
R(
p

t ; x)
�

�

�

�

�

�

x=
p

t

+
2t 2

(1− t )2
R(
p

t ;
p

t ) (3.148)

Adding together the three cases above gives the result of the lemma. �

The dominant singularity of QP (1)(t ) is only marginally more complicated than that of

Q (1)(t ); we find that here it is a square-root singularity occurring in M (
p

t ) and N (
p

t ), at the

point t = ρ= 0.213862 . . ., a root of 4− 16ρ− 12ρ2− 3ρ3 = 0.

Corollary 3.50. The number q p (1)n of 1-sided quasi-prudent polygons of half-perimeter n is asymp-

totically

q p (1)n ∼ κµ
n n−3/2,

where µ= ρ−1 = 4.675891 . . . and κ= 0.392267 . . ..

1-sided quasi-prudent polygons by area

The area generating function for 1-sided quasi-prudent polygons is even easier to calculate than

the perimeter generating function, though of course we cannot use the P (t ; u, x) function we

derived earlier.

Instead, define the generating function

A(q ; u) =
∑

n,i≥0

an,i qn u i

where an,i is the number of FP-polygons with area n and left column of height i .

Lemma 3.51. The function A(q ; u) satisfies the equation

A(q ; u) =
q u

1− q u
+

q u

1− q u

�

∂

∂ u
A(q ; u)

�

�

�

�

�

�

u=1

. (3.149)

Proof. There are two cases to consider:
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• Those polygons comprising only a single column have the generating function

q u

1− q u
.

• Otherwise, an FP-polygon can be constructed by adding a column to the left side of an-

other FP-polygon. These then have the generating function

∑

n,i≥0

an,i qn ·
 

i−1
∑

l=0

∞
∑

k=1

qk uk

!

=
∑

n,i≥0

an,i qn ·
i q u

1− q u

=
q u

1− q u

�

∂

∂ u
A(q ; u)

�

�

�

�

�

�

u=1

.

Adding together the two above cases gives the result of the lemma. �

Lemma 3.52. The area generating function for 1-sided quasi-prudent polygons is

QA(1)(q) =
4q(1− q)

1− 3q + q2
(3.150)

= 4q + 8q2+ 20q3+ 52q4+ 136q5+ 356q6+ 932q7+ 2440q8+O(q9).

Thus the number qa(1)n of 1-sided quasi-prudent polygons of area n is asymptotically

qa(1)n ∼ κτ
n

where τ = (3+
p

5)/2= 2.61803 . . . and κ= (10− 2
p

5)/5= 1.10557 . . ..

Proof. Taking the partial derivative of (3.149) with respect to u and then setting u = 1 gives

∂

∂ u
A(q ; u)

�

�

�

�

�

u=1

=
q

1− 3q + q2
, (3.151)

which upon substitution into (3.149) gives

A(q ; 1) =
q(1− q)

1− 3q + q2
. (3.152)

As was discussed for the perimeter case, there are now three main cases for 1-sided quasi-prudent

polygons:

• Polygons comprising a single column above or below the x-axis have the generating func-

tion
2q

1− q
. (3.153)
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• Polygons which do not step to the right of the y-axis are exactly FP-polygons (or their

reflections). These have generating function 2A(q ; 1).

• Non-trivial polygons which step to the right of the y-axis are FP-polygons (or their reflec-

tions) with a column attached to the right side, with the constraint that the bottom of the

new column must be no higher than the bottom of the FP-polygon. (For the reflections,

the top of the new column must be no lower than the top of the FP-polygon.) Their

generating function is thus
2q

(1− q)2
A(q ; 1). (3.154)

Adding together the three cases above gives QA(1)(q).

The dominant singularity is clearly a simple pole at a root of 1− 3q + q2 = 0. The smallest

such root is τ−1 = (3−
p

5)/2= 0.381966 . . . . �

3.3.3 Other models

As mentioned at the start of this chapter, one of the primary goals in studying subclasses of

SAWs and SAPs is finding solvable models which display behaviour similar to that of the general

cases. In practice, this usually boils down to two criteria:

• Looking for a model, enumerated by say {an}, such that the asymptotic behaviour of an

closely resembles (1.7) (for walks) or (1.11) (for polygons), with the growth constant and

exponent close to the known/conjectured values for the lattice; or

• Looking for a model for which some measurement of the mean ‘size’ (e.g. mean squared

end-to-end distance of walks of length n) resembles (1.29), with the exponent equal or

close to the known/conjectured value for the lattice.

In this subsection we will briefly mention two (existing) results which are set apart from the

other models presented in this chapter, in ways which are related to the above two points.

Weakly directed walks

Recall from Chapter 1 that the current best estimate for the growth constant of the square lattice

is [73, 75]

µsquare ≈ 2.63815853031(3).

Of all the solvable models described in this chapter thus far, the one whose exponential growth

rate is the closest to this estimate is the model of 2-sided perimeter walks, for which the growth

rate is

τ ≈ 2.50399575841.
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(The conjectured value for quasi-prudent walks is much higher than this, at around 2.609, but

we are unable to solve that model.)

However, Bacher and Bousquet-Mélou [2] have recently defined and solved a subclass of

SAWs with a growth rate considerably larger than that of 2-sided perimeter walks. They call

them weakly directed walks, and they have the following very simple definition: a SAW is weakly

directed if, between two visits to any given horizontal line, the walk is partially directed.

Bacher and Bousquet-Mélou show that weakly directed walks are easily constructed by con-

catenating irreducible bridges, and that these bridges must be partially directed. They use this

construction to solve for the generating function of weakly directed walks, and find that the

number wn of these walks of length n is asymptotically

wn ∼ κµ
n

where µ≈ 2.5447 and κ is a positive constant.

As Bacher and Bousquet-Mélou note [2], this value for the growth constant of a solvable

subclass of SAWs is currently the largest known, except for somewhat unsatisfying models like

SAWs confined to a strip of small width [122] or SAWs constructed by concatenating irreducible

bridges of small lengths [74].

Spiral walks

In Chapter 1 we mentioned that the mean squared end-to-end distance for SAWs of length n,

denoted 〈R2
e〉n , is expected to behave asymptotically as

〈R2
e〉n ∼ En2ν ,

where E is a lattice-dependent positive constant and ν depends only on the dimensionality of

the lattice. It is expected that in two dimensions, ν = 3/4.

For all of the solved (and unsolved, for that matter) walk models presented in this chapter

thus far, the mean squared end-to-end distance of walks of length n has been shown or is expected

to behave asymptotically like Ēn2 for some constant Ē . That is, if we define the exponent ν for

subclasses of SAWs just as for general SAWs, then for all the subclasses considered in this chapter

so far, ν is (or is believed to be) one.

However, there exists a solvable subclass of SAWs, namely spiral walks, for which the ex-

ponent ν is less than 1. These are simply SAWs for which a left turn is forbidden;16 that is,

the consecutive pairs of steps north-west, east-north, south-east and west-south are forbidden.17

If we denote by sn the number of such walks of length n, then Blöte and Hilhorst [15] and

16By symmetry we could of course forbid right turns instead; there appears to be no clear consensus in the litera-

ture.
17Such a restriction is known as a two-step rule [57].
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Guttmann and Wormald [59] independently found that

sn ∼
π

4 · 35/4
n−7/4 exp(2π(n/3)1/2).

This means that, from an enumerative perspective, spiral walks are far removed from general

SAWs – they don’t even have an exponential growth rate! Instead, the dominant factor in the

asymptotic form of sn is µ
p

n for a positive constant µ.

However, Blöte and Hilhorst also showed that the mean squared end-to-end distance of spiral

walks of length n, which we will denote by 〈S2
e 〉n , has the asymptotic form

〈S2
e 〉n ∼

3

4π2
n(log n)2.

While this is still quite different from the En3/2 we expect for general two-dimensional SAWs,

it is significant in that it is different from the O(n2) behaviour we observe in all other solvable

models. Ignoring the logarithmic correction term in 〈S2
e 〉n , we note that for spiral walks the

exponent ν = 1/2. To our knowledge there are no known solved models for which 1/2< ν < 1.

3.4 Triangular lattice

In this section and the next we will briefly consider the other regular two-dimensional lattices:

the triangular and honeycomb (hexagonal) lattices18. Historically there seems to have been less

interest in finding solvable models on these lattices than on the square lattice, and this is reflected

in the fact that we have spent relatively little time studying solvable models on these other

lattices. The only models we will consider here are adaptations of prudent walks from the

square lattice.

The definition of a prudent walk carries over from the square lattice to the triangular lattice

in the obvious way: a SAW on the triangular lattice is prudent if it never takes a step towards

an occupied lattice vertex.19 The notion of the bounding box, however, does not translate quite

so easily – in general, the ‘box’ becomes an irregular six-sided shape, where one or more of the

sides can have length 0 (i.e. consist of only a single vertex). See Figure 3.19 for an example of a

prudent walk on the triangular lattice and its irregular ‘box’.

Bousquet-Mélou [17] considers prudent walks on the triangular lattice20 with the added

restriction that every walk must end on the boundary of its bounding triangle – the smallest

18For the honeycomb lattice, ‘regular’ is somewhat of a misnomer, as the lattice is not vertex-transitive. How-

ever, viewed as a graph, the honeycomb lattice is 3-regular, and moreover it is face-transitive, so we do not feel too

uncomfortable referring to it as ‘regular’.
19As we will see in Section 3.5, things are somewhat more complicated on the honeycomb lattice.
20Bousquet-Mélou orients the lattice so that it contains horizontal edges (corresponding with e.g. Figure 3.19), and

we will follow this convention.
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north-pointing equilateral triangle containing the entire walk.21 She solves the generating func-

tion of such walks, finding it to be non-D-finite, with dominant singularity a simple pole at

ρ = (
p

17− 3)/4 = 0.280 . . .. Thus the number ptn of these triangular prudent walks of length

n satisfies

ptn ∼ κ
 

3+
p

17

2

!n

for some positive constant κ, where the growth rate (3+
p

17)/2≈ 3.56. (We remind the reader

here that the number of SAWs on the triangular lattice is expected to behave like

cn ∼Anγ−1µn ,

where γ = 43/32 and µ≈ 4.150797226.)

We will remove the bounding triangle restriction and instead consider prudent walks on the

triangular lattice in terms of the irregular ‘box’. In an abuse of mathematical language, we shall

refer to this shape as the bounding hexagon, or just the hexagon of a walk. To be more precise,

the hexagon of a walk ω is the smallest convex lattice polygon which contains ω. It will have

six sides: north, north-east, south-east, south, south-west and north-west; some (or all, in the

case of the empty walk) may consist of single vertices. In the same way that a prudent walk on

the square lattice must end on its bounding box, a prudent walk on the triangular lattice must

end on its hexagon. We can then define six subclasses of prudent walks on the triangular lattice:

• A prudent walk is 1-sided if, after every step, the endpoint of the current walk is on the

north-east side of its hexagon.

• A prudent walk is 2-sided if, after every step, the endpoint of the current walk is on the

north-east or north sides of its hexagon.

• We continue adding sides in a counter-clockwise fashion for 3-sided through to 6-sided

(unrestricted) prudent walks.

In Figure 3.20 we show examples of 1- and 2-sided prudent walks.

1-sided prudent walks

These are essentially the triangular lattice-analogue of partially directed walks on the square

lattice – they are unable to take west or south-west steps, and as long as we forbid immediate

reversals then all such walks are prudent. Define the generating function

T (1)(t ) =
∑

n≥0
t (1)n t n ,

where t (1)n is the number of 1-sided prudent walks of length n.

21We will refer to such walks here and in Chapter 4 as equilateral prudent walks.
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Figure 3.19: A prudent walk on the triangular lattice with its hexagon indicated.

Lemma 3.53. The generating function T (1)(t ) of 1-sided prudent walks on the triangular lattice is

T (1)(t ) =
1+ t

1− 3t − 2t 2

= 1+ 4t + 14t 2+ 50t 3+ 178t 4+ 634t 5+ 2258t 6+O(t 7). (3.155)

Thus the number of 1-sided prudent walks of length n satisfies

t (1)n ∼
 

17+ 5
p

17

34

!

·
 

3+
p

17

2

!n

.

Proof. As we did on the square lattice, we divide walks according to their last inflating step.

Here, any north-east or east step is inflating.

• Walks which have no inflating steps contain only north-west or south-east steps; their

generating function is thus

1+
2t

1− t
.

• Otherwise, walks which have taken an inflating step can be split into three parts: what

came before the last inflating step (any 1-sided walk), the last inflating step (north-east or

east), and what came after the last inflating step (nothing, north-west steps or south-east

steps). Their generating function is thus

T (1)(t ) · 2t ·
�

1+
2t

1− t

�

.

Adding the above two cases together gives

T (1)(t ) = 1+
2t

1− t
+T (1)(t ) · 2t ·

�

1+
2t

1− t

�

, (3.156)

the solution to which is exactly the result of the lemma. The dominant singularity is a simple

pole at a root of 1− 3t − 2t 2 = 0. �
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i

Figure 3.20: 1-sided and 2-sided prudent walks on the triangular lattice, with their respective

hexagons and the distance i (for the 2-sided walk) indicated.

Note that the growth rate of 1-sided prudent walks is the same as that of Bousquet-Mélou’s

prudent walks which end on their bounding triangle. This serves to highlight how strong the

bounding triangle restriction is, and suggests that the average walk behaves much like a 1-sided

walk (or a reflection of one).

2-sided prudent walks

The construction and solution for 2-sided prudent walks looks much like that of 2-sided prudent

walks on the square lattice. By symmetry, we only need to count those walks ending on the

north side of their hexagon. Define the generating function by

N (t ; u) =
∑

n,i≥0

nn,i t n u i

where nn,i is the number of 2-sided prudent walks of length n which end on the north side of

their hexagon, with the endpoint at distance i from the easternmost vertex of the north side

of the hexagon. (See Figure 3.20 for an example of a 2-sided prudent walk with the distance i

indicated.)

Lemma 3.54. The generating function N (t ; u) satisfies the functional equation
 

1−
t (1− t 2)(1+ u)

(u − t )(1− t u)

!

N (t ; u) =
1

1− t u
+
(1+ t )(u − 2t )

u − t
N (t ; t )−

1− t + t 2− t u

1− t u
N (t ; 0).

(3.157)

Proof. As usual, we count walks according to their last inflating step.

• Walks with no inflating step contain only west steps, and have the generating function

1

1− t u
.
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• Walks whose last inflating step was north-west are constructed by adding an inflating step

to any walk counted by N (t ; u), and then possibly east or west steps. Their generating

function is

∑

n,i≥0

nn,i t n · t
 

i
∑

k=1

t k u i−k +
∞
∑

l=0

t l u i+l

!

(The sum over k is for walks with east steps following the inflating step, while the sum

over l accounts for west steps.)

= t
∑

n,i≥0

nn,i t n ·
 

t (u i − t i )

u − t
+

u i

1− t u

!

=
t 2

u − t
[N (t ; u)−N (t ; t )]+

t

1− t u
N (t ; u).

• Similarly, walks with last inflating step north-east (from the north side of the hexagon)

have generating function

∑

n,i≥0

nn,i t n · t
 

i−1
∑

k=0

t k u i−1−k +
∞
∑

l=1

t l u i−1+l

!

(The sum over k is for walks with east steps following the inflating step, while the sum

over l considers west steps.)

= t
∑

n,i≥0

nn,i t n ·
 

u i − t i

u − t
+

t u i

1− t u

!

=
t

u − t
[N (t ; u)−N (t ; t )]+

t 2

1− t u
N (t ; u),

except we are now missing the term for when the inflating step is from the north-east

corner and no west steps follow. So we must add on an extra tN (t ; 0).

• We likewise consider walks with last inflating step north-east (from the north-east side of

the hexagon), which have generating function

N (t ; t )−N (t ; 0).

(The subtracted term is because walks with last inflating step from the corner were previ-

ously counted.)

• Finally, walks with last inflating step east have generating function

tN (t ; t ).

Adding all the above together and equating with N (t ; u) gives the result of the lemma. �
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Lemma 3.55. Define

G ≡G(t ) =
1− t + t 2+ t 3− (1+ t )

p

1− 4t + 2t 2+ t 4

2t
X (t ; u) = (u − t )(2+ t u − t 2)

Y (t ; u) = (1+ t )(u − 4t + 2t 3+ t u + 2t 2u − 2t 3u − t u2+ t 2u2)

K(t ; u) = u − 2t + t 3− t u + t 2u + t 3u − t u2.

Then the generating function N (t ; u) has the solution

N (t ; u) =
1

K(t ; u)(3− t )

�

X (t ; u)−
Y (t ; u)X (t ;G)

Y (t ;G)

�

, (3.158)

and the generating function for 2-sided prudent walks is

T (2)(t ) = 2N (t ; 1)−N (t ; 0)

=
3− 10t − t 2+ 6t 3− 2t 4+ 2t (1− t )

p

1− 4t + 2t 2+ t 4

(1− 3t − 2t 2)(3− 14t + 11t 2− 4t 3)

(3.159)

Proof. Substituting u = 0 into (3.157) gives

N (t ; 0) =
1

3− t
+

2(1+ t )

3− t
N (t ; t ), (3.160)

and then using (3.160) to eliminate N (t ; 0) from (3.157) leaves

K(t ; u)N (t ; u) =
X (t ; u)

3− t
+

Y (t ; u)

3− t
N (t ; t ). (3.161)

Now G is the power series root of K(t ; u) = 0, so substituting u =G into (3.161) gives

N (t ; t ) =−
X (t ;G)

Y (t ;G)
,

and then the solution to N (t ; u) follows. To obtain T (2)(t ), we add together the generating

functions of walks ending on the north and north-east sides of the hexagon, and then subtract

the walks ending at the corner which have been counted twice. �

The generating function is algebraic, and thus its singular behaviour is easily verified.

Corollary 3.56. The number t (2)n of 2-sided prudent walks of length n satisfies

t (2)n ∼ κτ
n

where τ = 3.792560 . . ., a root of 4− 11τ+ 14τ2− 3τ3 = 0, and κ= 1.39239 . . ..
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3-sided prudent walks

We are able to construct functional equations for the 3-sided case, but unfortunately our at-

tempts to solve these equations have been unsuccessful. For brevity we will omit the proof; it

follows in much the same way as the 2-sided case.

Define the generating functions

A(t ; u, v) =
∑

n,i , j≥0

an,i , j t n u i v j

B(t ; u, v) =
∑

n,i , j≥0

bn,i , j t n u i v j

where an,i , j is the number of 3-sided prudent walks ending on the north side of their hexagon,

with

• length n,

• distance i from the endpoint to the easternmost vertex of the north side of the hexagon,

and

• distance j from the endpoint to the westernmost vertex of the north side of the hexagon.

Similarly, bn,i , j is the number of 3-sided prudent walks ending on the north-east side of their

hexagon, with

• length n,

• distance i from the endpoint to the easternmost vertex of the north side of the hexagon,

and

• the north side of the hexagon of length j .

In Figure 3.21 we illustrate examples of the two types of 3-sided prudent walk, together with the

distances measured by the catalytic variables.

Proposition 3.57. The generating functions A(t ; u, v) and B(t ; u, v) satisfy the functional equa-

tions
 

1−
t (1− t 2)(u + v)

(u − t v)(v − t u)

!

A(t ; u, v) = 1−
t (1+ t )

v − t u
A(t ; u, t u)−

t (1+ t )

u − t v
A(t ; t v, v)

−
t 2(1− u)

v − t u
A(t ; 0, v)+

t 2(1− u)

v − t u
A(t ; 0, t u)−

t 2(1− v)

u − t v
A(t ; u, 0)+

t 2(1− v)

u − t v
A(t ; t v, 0)

+ v(1+ t )B(t ; t , v)− (v − t )B(t ; 0, v)+ u(1+ t )B(t ; t , u)− (u − t )B(t ; 0, u) (3.162)

 

1−
t v(1− t 2)(1+ u)

(u − t )(1− t u)

!

B(t ; u, v) =
1

1− t u
−

t v(1+ t )

u − t
B(t ; t , v)+

t (1− t v)

1− t u
B(t ; 0, v)

+
1+ t

v
A(t ; t v, v)−

1

v
A(t ; 0, v)−

t (1− v)

v
A(t ; t v, 0). (3.163)
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ij j

i

Figure 3.21: 3-sided prudent walks on the triangular lattice, ending on the north and north-east

sides of their hexagons, with the distances i and j indicated.

The construction used to generate these walks is very similar to the one used for 3-sided

prudent walks on the square lattice [31, 17], and so the resulting functional equations (3.162)

and (3.163) do seem very similar. However, matters are complicated here by the fact that there

is more nuanced behaviour occurring at the corners of the hexagon – in particular, a north-east

step from the north-east corner of the hexagon moves both the north and north-east sides of the

box (and likewise for a north-west step from the north-west corner of the hexagon). This results

in a number of extra terms featuring in these functional equations which are not needed for the

square lattice case – terms like A(t ; u, 0) and B(t ; 0, u).

The generating function for 3-sided prudent walks is T (3)(t ) = A(t ; 1, 1) + 2B(t ; 1, 1) −
2B(t ; 0, 1). Numerical evidence suggests that the growth rate of 3-sided prudent walks is ap-

proximately 3.84138, and that the singularity is a simple pole.

It should be possible to write down functional equations for the 4-, 5- and 6-sided cases as

well, but given that we have little chance of being able to solve such equations, we will forego

this task for the present time.

3.5 Honeycomb lattice

As we mentioned at the start of the last section, there are some factors which make prudent

walks on the honeycomb lattice somewhat more complicated than on the triangular (and square)

lattice. Most obviously, there are two types of vertices on the honeycomb lattice:22 those with

edges in the west, north-east and south-east directions, and those with edges in the east, north-

west and south-west directions. This means that we will need to split the walks into two groups,

according to which type of vertex they end on, and use separate generating functions for each

group.

More subtle is the fact that walks on the honeycomb lattice cannot actually step in straight

22Throughout this section we will orient the honeycomb lattice as in Figure 3.22, that is, so that the lattice contains

horizontal edges.
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Figure 3.22: A section of the honeycomb lattice and the three orientations of equivalent brick-

work lattices: vertical, positive and negative respectively.

lines – they are forced to turn through an angle of ±π/3 at each vertex. This makes the normal

definition of ‘prudent’ rather peculiar – we wish to forbid a walk from stepping towards an

occupied vertex, but it wouldn’t be able to take more than one step at a time in a given direction

anyway.

Instead, we propose a slight modification of the prudent condition; it is most easily visualised

in terms of brickwork lattices. A brickwork lattice is simply a deformation of the honeycomb

lattice which results in all edges lying in one of two perpendicular orientations. A honeycomb

lattice is equivalent to three different orientations of a brickwork lattice;23 we will refer to the

three orientations as vertical, positive and negative. (See Figure 3.22.)

We present the following definition of a prudent walk on the honeycomb lattice:24

• Any walk of length 0 or 1 is considered to be prudent.

• Otherwise, a walkω = (ω0,ω1, . . . ,ωn−1,ωn) is prudent if

– the walk (ω0,ω1, . . . ,ωn−1) is prudent, and

– after deforming the lattice into the brickwork lattice with the property that the last

23By equivalent, we mean that they are the same when considered as graphs, and in particular there is a one-to-

one mapping between SAWs on each lattice. Measurements like end-to-end distance will change from one lattice to

another.
24We could of course define prudent walks in the more obvious way, by simply forbidding any steps towards

occupied vertices. It is not difficult to show that a walk which meets that criterion is also prudent by our definition,

so that our prudent walks are a superset of that class.
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Figure 3.23: A prudent walk on the honeycomb lattice.

two steps ofω are collinear, we have that the last step ofω was not directed towards

an already occupied vertex.

In essence, after each step we deform the lattice so that the walk can step in a straight line, and

we then apply the prudent condition.25 See Figure 3.23 for an example.

Our sub-classification of walks into 1-sided, 2-sided, etc. also depends on the brickwork

lattice orientations. We say that a prudent walkω = (ω0,ω1, . . . ,ωn−1,ωn) on the honeycomb

lattice is k-sided, with 1≤ k ≤ 6, if

• the walk (ω0,ω1, . . . ,ωn−1) is k-sided, and

– k = 1: in the vertical orientation there is no occupied vertex further east thanωn ;

– k = 2: in the vertical orientation there is no occupied vertex further east thanωn , or

in the negative orientation there is no occupied vertex further north-east thanωn ;

– k = 3: in the vertical orientation there is no occupied vertex further east thanωn , or

in the negative orientation there is no occupied vertex further north-east than ωn ,

or in the positive orientation there is no vertex further north-west thanωn ;

– we continue this in a counter-clockwise direction for k = 4,5,6.

We will discuss here only the 1- and 2-sided models, as these are the ones we have been able to

solve.

1-sided prudent walks

We split the walks into two groups L and R , depending on which type of vertex they end at.

Walks ending at a vertex with an edge in the east direction are in R , and the others are in L .

25We thank one of the examiners for the following alternative phrasing of the definition of a prudent walk: Any

walk of length 0 or 1 is prudent; otherwise, a SAW of length n ≥ 2 is prudent if its last two steps could be repeated

indefinitely without creating self-intersections.
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Figure 3.24: A 1-sided prudent walk on the honeycomb lattice, and the same walk on the vertical

brickwork lattice.

(So the walk illustrated in Figure 3.24 is in L .) We will arbitrarily assign the starting vertex to

be anL vertex.26 So define the two generating functions

L(t ) =
∑

n≥0
ln t n

R(t ) =
∑

n≥0
rn t n

where ln (resp. rn) is the number of 1-sided prudent walks of length n inL (resp.R ).

Lemma 3.58. The generating functions L(t ) and R(t ) are given by

L(t ) =
1+ t 2

1− 3t 2
, R(t ) =

2t

1− 3t 2
, (3.164)

and so the generating function of 1-sided prudent walks is

H (1)(t ) = L(t )+R(t ) =
(1+ t )2

1− 3t 2
(3.165)

= 1+ 2t + 4t 2+ 6t 3+ 12t 4+ 18t 5+ 36t 6+ 54t 7+ 108t 8+O(t 9).

The number h (1)n of 1-sided prudent walks of length n satisfies

h (1)n ∼ κn3n/2,

where

κn =







4/3 n even
2p
3

n odd.

Proof. We count walks according to their last east step. Walks in L with no east step have the

generating function

1+
2t 2

1− t 2
,

26This choice does affect the generating functions slightly, but will not change the dominant singular behaviour.
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while those inR have the generating function

2t

1− t 2
.

Otherwise, the last east step of a walk must have been appended to a walk inR . The generating

function of walks inL with at least one east step is then

R(t ) · t ·
 

1+
2t 2

1− t 2

!

,

and walks inR have the generating function

R(t ) · t ·
2t

1− t 2
.

Thus, we have

L(t ) = 1+
2t 2

1− t 2
+

 

t +
2t 3

1− t 2

!

R(t )

R(t ) =
2t

1− t 2
+

2t 2

1− t 2
R(t ),

(3.166)

and the solution to these equations is exactly the result of the lemma.

The function H (1)(t ) has two dominant singularities: simple poles at t =±1/
p

3. This leads

to the asymptotic behaviour

h (1)n ∼
�

2

3
+

1
p

3

�

(
p

3)n +
�

2

3
−

1
p

3

�

(−
p

3)n ,

which is equivalent to the second part of the lemma. �

2-sided prudent walks

Based on the definition of 2-sided prudent walks, we further subdivide these walks into two

classes: A contains walks which, in the vertical orientation, have not stepped further east than

their endpoint, andB contains walks which, in the negative orientation, have not stepped fur-

ther north-east than their endpoint. We will thus have to work with four generating functions,

which will count walks in A ∩L , A ∩R , B ∩L and B ∩R . (The fact that we have to

start at either anL or anR vertex prevents us from being able to exploit a reflective symmetry

betweenA andB .) We define them as

AL(t ; u) =
∑

n,i≥0

aln,i t n u i BL(t ; u) =
∑

n,i≥0

b ln,i t n u i

AR(t ; u) =
∑

n,i≥0

a rn,i t n u i BR(t ; u) =
∑

n,i≥0

b rn,i t n u i

where
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Figure 3.25: Top: A 2-sided prudent walk in A , on the honeycomb and vertical brickwork

lattice. For this walk i = 2. Bottom: A 2-sided prudent walk in B , on the honeycomb and

negative brickwork lattice. For this walk i = 3.

• aln,i (resp. a rn,i ) is the number of 2-sided prudent walks inA ∩L (resp.A ∩R ) with

length n and requiring a further i north-east steps in order to be a part ofB ; and

• b ln,i (resp. b rn,i ) is the number of 2-sided prudent walks inB ∩L (resp.B ∩R ) with

length n and requiring a further i east steps in order to be a part ofA .

In Figure 3.25 we provide examples of 2-sided prudent walks inA andB .

Lemma 3.59. The generating functions AL(t ; u),AR(t ; u),BL(t ; u) and BR(t ; u) satisfy the equa-

tions

AL(t ; u) =
1

1− t 2u
+

t u(1− t 4)

(u − t 2)(1− t 2u)
AR(t ; u)−

t 3

u − t 2
AR(t ; t 2)

+BL(t ; t 2)− (1− t 2)BL(t ; 0) (3.167)

 

1−
t 2(1− t 2)(1+ u)

(u − t 2)(1− t 2u)

!

AR(t ; u) =
t

1− t 2u
−

t 2

u − t 2
AR(t ; t 2)+ tBL(t ; t 2) (3.168)
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1−
t 2(1− t 2)(1+ u)

(u − t 2)(1− t 2u)

!

BL(t ; u) =
1

1− t 2u
−

t 2

u − t 2
BL(t ; t 2)+ tAR(t ; t 2) (3.169)

BR(t ; u) = t +
t u

1− t 2u
+

t u(1− t 4)

(u − t 2)(1− t 2u)
BL(t ; u)−

t 3

u − t 2
BL(t ; t 2)

+AR(t ; t 2)− (1− t 2)AR(t ; 0). (3.170)

Proof. Though we’ve not properly defined the hexagon of a walk, and thus we cannot really talk

about the sides of the hexagon, it is still clear what constitutes an inflating step in this model:

any step which moves one of the relevant boundaries (the eastern boundary in the vertical ori-

entation or the north-eastern boundary in the negative orientation) is inflating. So an inflating

step must be an east step from a walk inA ∩R or a north-east step from a walk inB ∩L .

• A ∩L : Walks with no inflating steps are empty or a sequence of south-east and south-

west steps; their generating function is

1

1− t 2u
.

Walks with last inflating step east are formed by appending steps to walks inA∩R . Their

generating function is

∑

n,i≥0

a rn,i t n · t
 

i
∑

k=0

t 2k u i−k +
∞
∑

l=1

t 2l u i+l

!

(The sum over k considers walks with north-east and north-west steps following the east

step; the sum over l is for walks with south-east and south-west steps following the east

step.)

= t
∑

n,i≥0

a rn,i t n ·
 

u i+1− t 2i+2

u − t 2
+

t 2u i+1

1− t 2u

!

=
t

u − t 2
[uAR(t ; u)− t 2AR(t ; t 2)]+

t 3u

1− t 2u
AR(t ; u).

Walks with last inflating step north-east are formed by appending steps to walks inB∩R .

These steps must be a sequence of east and south-east steps, unless the walk inB∩R was

also in A : in that case, we can only append a single north-west step. The generating

function is thus

BL(t ; t 2)−BL(t ; 0)+ t 2BL(t ; 0).

Adding the above three generating functions together gives AL(t ; u), and rearranging what

results gives (3.167).
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• A ∩R : The same three options are applicable here – for the most part, the only difference

is in the parity of the number of steps we append after the inflating step. The problem of

theB walks which are also inA is not an issue here.

• B ∩L : Walks with no inflating steps are empty or a sequence of west and north-west

steps; their generating function is
1

1− t 2u
.

Walks with last inflating step north-east are formed by appending steps to walks inB∩L .

Their generating function is

∑

n,i≥0

b ln,i t n · t
 

i
∑

k=1

t 2k−1u i−k +
∞
∑

l=1

t 2l−1u i+l−1

!

= t
∑

n,i≥0

b ln,i t n ·
 

t (ui − t 2i )

u − t 2
+

t u i

1− t 2u

!

=
t 2

u − t 2
[BL(t ; u)−BL(t ; t 2)]+

t 2

1− t 2u
BL(t ; u)

Walks with last inflating step east are formed by appending steps to walks inA∩R . These

steps must be a sequence of north-east and north-west steps. The generating function is

thus

tAR(t ; t 2).

Adding together the above three generating functions gives BL(t ; u), and (3.169) follows.

• B∩R : The same three options are applicable here – for the most part, the only difference

is in the parity of the number of steps we append after the inflating step. We do have to

deal with the problem of walks inA which are also inB . Also, a single south-east step

will also be counted by BR. �

Lemma 3.60. Define

J ≡ J (t ) =
1− t 2+ 2t 4−

p

1− 2t 2− 3t 4+ 4t 8

2t 2
.

Then the generating function H (2)(t ) of 2-sided prudent walks is

H (1)(t ) =
(1+ t )(J − t − 3t 2− 2t 3+ t 5+ 2t J + 3t 4J + 2t 5J − t 2J 2− 2t 3J 2)

(1− 3t 2)(1− t 2J )(J − t − t 2)
(3.171)

=
(1+ t )

�

2+ t − 5t 2− 5t 3− 3t 4+ 4t 5+ 2t 6+ t (1− t )
p

1− 2t 2− 3t 4+ 4t 8
�

2(1− 3t 2)(1− t − t 2− t 3+ t 5)

= 1+ 3t + 5t 2+ 9t 3+ 16t 4+ 29t 5+ 51t 6+ 92t 7+ 163t 8+O(t 9).
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Proof. The kernels in (3.168) and (3.169) are cancelled by the substitution u = J . Upon per-

forming this substitution we have two equations in AR(t ; t 2) and BL(t ; t 2); these can be solved

to give

AR(t ; t 2) =
J (J − t 2)

t (1− t 2J )(t 2− t 4+ 2t 2J − J 2)

and

BL(t ; t 2) =
(J − t 2)(1− t 2+ J )

(1− t 2J )(t 2− t 4+ 2t 2J − J 2)
.

These can be substituted into (3.168) and (3.169) to give solutions for AR(t ; 1), AR(t ; 0), BL(t ; 1)

and BL(t ; 0); these in turn can be substituted into (3.167) and (3.170) to give AL(t ; 1) and BR(t ; 1).

The overall solution is then

H (1)(t ) =AL(t ; 1)+AR(t ; 1)+BL(t ; 1)+BR(t ; 1)−AR(t ; 0)−BL(t ; 0). �

As usual with algebraic functions, the dominant singularity of H (1)(t ) is relatively easy to

locate: it is a simple pole at a root of J − t − t 2 = 0.

Corollary 3.61. The number h (2)n of 2-sided prudent walks of length n is asymptotically

h (2)n ∼ κλ
n ,

where λ= 1.77848 . . ., a root of 1−λ2−λ3−λ4+λ5 = 0, and κ= 1.69314 . . ..

Recall that the number of SAWs on the honeycomb lattice is expected to behave like

cn ∼Anγ−1µn ,

where γ = 43/32 and µ =
Æ

2+
p

2 = 1.84776 . . .. Thus, we see that even the relatively simple

model of 2-sided prudent walks on the honeycomb lattice has a growth rate remarkably close to

that of general SAWs.
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Chapter 4

Interacting polymer models

Recall from Chapter 1 that self-avoiding walks have long been considered as a canonical model

for long-chain polymers in solution [93]. The standard model associates a weight (or fugacity) x

with each step, or monomer.1 If cn is the number of n-step SAWs (equivalent up to translation),

the length generating function is

Z(x) =
∑

n≥0
cn xn .

As we saw in Chapter 1, it has long been known that the limit

logµ= lim
n→∞

1

n
log cn

exists, where the growth constant µ depends on the lattice being considered.

To model the behaviour of a polymer interacting with an impenetrable surface, we consider

SAWs restricted to a half-space. Although this restriction limits the number of walk configura-

tions, it has no effect on the exponential growth of the number of walks and hence the growth

constant [118]. To model the monomer-surface interactions of an adsorbing polymer, we asso-

ciate a fugacity eα with each visit of the walk (edge or vertex) to the boundary of the half-space.

If we define c+n (m) as the number of n-step half-space walks beginning on the surface with m

contacts on the surface, then the partition function for walks of length n is

Zn(α) =
n
∑

m=0
c+n (m)e

mα,

where α = −ε/kB T , where ε is the energy associated with a surface visit, T is the absolute

temperature and kB is Boltzmann’s constant. For sufficiently large values of α, configurations

with many contacts dominate the partition function and the walk is said to be in an adsorbed

state; otherwise, the loss in configurational entropy dominates, and the walk is repelled by the

surface and said to be in a desorbed state.

1In keeping with the notation of Chapters 2 and 3 and much of the wider literature, we will use the fugacity x

when studying general SAWs and the fugacity t for solvable subclasses.
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The free energy of the system is

bκ(α) = lim
n→∞

1

n
logZn(α), (4.1)

which has been shown [62, 103] to exist for the hypercubic lattice Zd for all α, for both the

edge- and vertex-weighted models. (Later in this chapter we will adapt existing arguments for

the hypercubic lattice to the honeycomb lattice, where we are able to conjecture and prove exact

results.) The free energy bκ(α) is a continuous and convex function of α. When α < 0 the surface

fugacity has no effect on the free energy, and bκ(α) = logµ [118]. For α ≥ 0, it has been shown

that

bκ(α)≥max{logµ,α}.

This implies the existence of a critical value αc with 0 ≤ αc ≤ logµ. At this critical point the

free energy bκ(α) is non-analytic, and so we say that αc is the location of the adsorption phase

transition: for α < αc, the polymer is desorbed, while for α > αc the polymer is adsorbed.2

Closely related to the free energy is the mean density of steps in the surface; for walks of

length n, this is given by

δn(α) =
1

n

∑

m mc+n (m)e
mα

∑

m c+n (m)e
mα =

1

n

∂ logZn(α)

∂ α
.

In the limit of infinitely long polymers, this density tends to3

δ(α) =
∂ bκ(α)

∂ α
.

(We note here that the symbol ρ, rather than δ, is frequently used in the literature to denote the

density of steps in the surface. However, in this chapter we will sometimes use ρ to denote the

radius of convergence of a power series (another common convention).)

The function δ acts as an order parameter for the system, and signals the onset of a phase

transition. If α < αc then the density is 0, while the density is non-zero for α > αc. If the

adsorption transition is second-order then δ is continuous for all α, while a first-order transition

results in a jump discontinuity at αc.

The behaviour of the free energy at the critical point αc is thought to be characterised by the

crossover exponent φ, satisfying

bκ(α)− bκ(αc)∼ c(α−αc)
1/φ as α→ α+c

for some constant c .
2The existence of one point of non-analyticity is guaranteed; it is possible that there may be others in the region

α > αc. If that were the case, then αc would still be the location of the adsorption transition; the other critical points

might then signal other types of transitions.
3The exchange of the limit and the derivative is possible thanks to the convexity of bκ(α), see for instance [112,

Theorem B7].
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Instead of directly working with the partition functions Zn for the models in question, we

will consider the generating function Z(x;α) =
∑

n Zn(α)x
n . As we saw in Chapter 3, a cen-

tral tenet of analytic combinatorics [44] is that the dominant singularities (the points of non-

analyticity closest to the origin), and thus the radius of convergence, of a generating function

determine the asymptotic behaviour of its coefficients. Specifically, if for a given α the radius of

convergence of Z(x;α) occurs at x = xc(α), then

bκ(α) = lim
n→∞

1

n
logZn(α) =− log xc(α). (4.2)

For many models (such as those considered in Section 4.3), it is much easier to determine the

generating function than to compute the individual partition functions Zn for each n. But

since (4.2) enables us to determine the free energy bκ(α) of a model directly from its generating

function, we need never consider the Zn anyway.

For ease of notation we will henceforth use the surface fugacity y = eα, and consider the

free energy, etc. as functions of y. The above arguments are still valid, with the critical fugacity

occuring at yc = eαc . We will write κ(y) = bκ(log y).

This chapter is comprised of three sections. In Section 4.1 we develop a generalisation of

the method of Duminil-Copin and Smirnov [106, 34] (see also Section 2.1), and use it to study

adsorbing self-avoiding walks on the honeycomb lattice. In particular, we obtain predictions

for the critical surface fugacity yc for two orientations of the honeycomb lattice, which agree

with conjectures of Batchelor and Yung [7] and Batchelor, Bennett-Wood and Owczarek [6].

For one of these orientations, we present a proof of that critical value. This proof depends on

the generating function of self-avoiding bridges which span a strip of width T disappearing in

the limit T → ∞. A proof of that fact, due primarily to Hugo Duminil-Copin, is given in

Appendix A. For the other orientation, we expect the proof to be very similar, and intend to

complete and publish it in the near future.

In Section 4.2 we investigate how the identities used in Section 4.1 can be adapted to the

square and triangular lattices, in a similar manner to the methodology of Section 2.2. We are

able to calculate numerical estimates of several critical surface fugacities, and find that they not

only agree well with existing estimates but exceed their numerical precision by several orders of

magnitude.

Finally, in Section 4.3 we consider solvable models of polymer adsorption. We briefly review

existing models, which are traditionally based on directed walks. We then introduce new solv-

able models based on prudent walks, which do not have a directedness restriction, and investigate

their critical behaviour.

4.1 Exact results for the honeycomb lattice

Recall from Section 2.1 that in 1982 Nienhuis [89] showed that, for n ∈ [−2,2], the O(n) loop

model on the honeycomb lattice could be mapped to a solid-on-solid model, from which he
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was able to derive the critical points and exponents (subject to some plausible assumptions).

In particular, he was able to predict the value of the growth constant for SAWs on the honey-

comb lattice; this result was proved in 2010 by Duminil-Copin and Smirnov [34] (the proof was

outlined in Section 2.1).

The results of Nienhuis and Duminil-Copin and Smirnov were concerned with bulk sys-

tems. Interesting surface phenomena can also be studied if one considers the n-vector model in

a half-space, with vertices in the surface having an associated fugacity. If this fugacity is made

repulsive, adsorption onto the surface will be energetically unfavourable; if the fugacity is made

attractive, adsorption becomes increasingly favoured. The adsorption transition is an example

of a special surface transition [14].

In 1995 Batchelor and Yung [7] extended Nienhuis’s work to the adsorption problem de-

scribed above, and making similar assumptions to Nienhuis conjectured the value of the critical

surface fugacity for the two-dimensional honeycomb lattice n-vector model using the integra-

bility of an underlying lattice model. In this section we show that the key identity proved by

Smirnov [106] for the O(n)model with n ∈ [−2,2] can be generalised to a semi-infinite system

with a surface fugacity. We use this to prove a generalisation of the identity of Duminil-Copin

and Smirnov linking certain generating functions in finite domains to include a surface fugacity.

The contribution of one of these generating functions vanishes at a particular value of the sur-

face fugacity, and this critical value coincides with the conjectured value of the critical fugacity

by Batchelor and Yung. That is, we have an independent prediction of the value of the critical

surface fugacity:

Conjecture 4.1. For the O(n) loop model on a hexagonal lattice half-plane with n ∈ [−2,2],

associate a fugacity xc(n) = 1/
Æ

2+
p

2− n with occupied vertices and an additional fugacity y

with occupied vertices on the boundary. Then the model undergoes a special surface transition at

y = yc(n) = 1+
2

p
2− n

.

At n = 0 this model becomes that of a self-avoiding walk interacting with an impenetrable

surface. For this model, it is known that the critical value of the (attractive) fugacity exists, and

at this point a macroscopic fraction of steps in an arbitrarily long walk becomes adsorbed onto

the surface. (Below this critical value the expected fraction of steps adsorbed onto the surface is

zero). In general we do not even have conjectures for the exact values of the critical fugacities on

various lattices; instead, numerical estimates using series analysis and Monte Carlo methods are

the best current results.

As indicated above (and indeed by the title of this section), however, the honeycomb lattice

is special. In that case, the critical value of the bulk fugacity xc has been proven in [34], and the

critical surface fugacity was conjectured in [7]. In this thesis we go further, and prove the exact

value:
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Figure 4.1: A SAW on the honeycomb lattice interacting with an impenetrable surface (the left

hand side of the picture). This orientation of the surface (i.e. with lattice edges perpendicular to

the surface) is the one considered in Theorem 4.2.

Theorem 4.2. The critical surface fugacity for self-avoiding walks on the hexagonal lattice, oriented

so that the lattice contains edges perpendicular to the surface, is

yc = 1+
p

2.

See Figure 4.1 for an example of a SAW interacting with the impenetrable surface in this

orientation.

In order to prove this result we require that two generating functions, originally defined

in [34] and generalised here to accommodate a surface fugacity, tend to 0 as the length and

width of a lattice segment grows large. In Section 2.1 we proved that at y = 1, one of these

functions does indeed disappear in the appropriate limit, subject to some simple results being

adapted from the square to the honeycomb lattice.4 In Subsection 4.1.2 we demonstrate that

this adaptation can indeed be done, and furthermore we extend the results to general y. In Ap-

pendix A we present the proof, due to Hugo Duminil-Copin, that the other generating function

also disappears in the appropriate limit.

These results, once adapted to the square and triangular lattices, also play a key role in the

methodology of Sections 2.2 and 4.2.
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a

z

Figure 4.2: A configuration γ on a finite domain, with the weighted vertices on the right hand

boundary indicated. The contribution of γ to F (z) is e−2iσπ/3x30y3n. Note that in this pic-

ture, the entire lattice has been rotated, so that the surface is still oriented in the same way as

Figure 4.1.

4.1.1 Identity in the presence of a boundary

Let H be the set of mid-edges on a half-plane of the honeycomb lattice, and define the surface

to be the set of vertices in the half-plane which are adjacent to only two other vertices. Recall

from Section 2.1 the definition of a domain Ω and a configuration γ . In this section we insist

that at least one of the vertices of V (Ω) is in the surface (otherwise adsorption onto the surface

would of course be impossible). Recall also that we denote by |γ | the number of vertices in γ

and by c(γ ) the number of closed loops. We introduce here a new measurement, ν(γ ), which is

the number of vertices of γ lying in the surface.

Define the following observable: for a ∈ ∂ Ω, z ∈Ω, set

F (Ω,a, z; x, y, n,σ) := F (z) =
∑

γ⊂Ω:a→z

e−iσW (γ :a→z)x |γ |yν(γ )nc(γ ),

where the sum is over all configurations γ ⊂ Ω for which the SAW component runs from the

mid-edge a to a mid-edge z (we say that γ ends at z). We denote by W (γ : a → z) the winding

angle of that self-avoiding walk. See Figure 4.2 for an example.

Recall Lemma 2.1, where Smirnov [106] showed that, at y = 1 and for special values of x

and σ , the observable F satisfies an identity of the form

(p − v)F (p)+ (q − v)F (q)+ (r − v)F (r ) = 0,

where p, q , r are the three mid-edges adjacent to an arbitrary v ∈V (Ω).

4Specifically, we proved that ET ,L(xc, 1)→ 0 as L→∞.
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α β

ε+

ε−

a
2L

T

Figure 4.3: Finite patch S3,1 of the hexagonal lattice with a boundary. Contours, possibly closed,

of the O(n) model run from mid-edge to mid-edge acquiring a weight x for each step, and a

weight y for each contact (shown as a black disc) with the right hand side boundary. The SAW

component of a configuration starts on the central mid-edge of the left boundary (shown as a).

In Section 2.1 we outlined the proof by Duminil-Copin and Smirnov [34] that the growth

constant of the self-avoiding walk is equal to x−1
c = (2cos(π/8)) =

Æ

2+
p

2. Recall that the

proof involved a special domain ST ,L (see Figure 2.3) and generating functions of SAWs ending

on the different sides of this domain.

Here we generalise their construction to include a boundary weight. As shown in Figure 4.3,

we will identify the surface with the β boundary of ST ,L.5

Let us define the following generating functions:

AT ,L(x, y) :=
∑

γ⊂ST ,L :

a→α\{a}

x |γ |yν(γ )nc(γ ),

BT ,L(x, y) :=
∑

γ⊂ST ,L :

a→β

x |γ |yν(γ )nc(γ ),

ET ,L(x, y) :=
∑

γ⊂ST ,L :

a→ε+∪ε−

x |γ |yν(γ )nc(γ ),

where the sums are over all configurations for which the SAW component runs from a to the α,

5It may seem strange to put the surface weights on the β boundary instead of the α boundary. While it is indeed

possible to derive an identity with the weights on the α boundary, at n = 0 and for some values of y in the region

we need to consider, some of the coefficients in that identity are negative. As we saw in Section 2.1, it is of crucial

importance that the coefficients are non-negative, so that we can make statements about upper bounds, limits, etc. of

the generating functions.
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β or ε+,ε− boundaries respectively. Furthermore define the special generating function

DT ,L(x, y) :=
∑

γ⊂ST ,L :
a→a

x |γ |yν(γ )nc(γ )

which sums over configurations comprising only closed loops inside ST ,L; that is, configurations

whose self-avoiding walk component is the empty walk a→ a.

Proposition 4.3. Let n = 2cosθ with θ ∈ [0,π] and define

xc =
1

2
sec

�

π±θ
4

�

= (2∓
p

2− n)−1/2.

Then

DT ,L(xc, y) = cos

�

3(π±θ)
4

�

AT ,L(xc, y)+ cos

�

π±θ
2

�

ET ,L(xc, y)+
y∗− y

y(y∗− 1)
BT ,L(xc, y),

(4.3)

where

y∗ =
1

1− 2x2
c

= 1+
1

cos((π±θ)/2)
, or equivalently, y∗x2

c =∓(2− n)−1/2.

Proof. Let pv , qv , rv be the mid-edges adjacent to a vertex v. We compute the sum

∑

v∈V (ST ,L)

(pv − v)F (pv )+ (qv − v)F (qv )+ (rv − v)F (rv ) (4.4)

in two ways. (As in Lemma 2.1, we calculate (pv − v), etc. by considering pv , qv , rv and v as

points in the complex plane.) Firstly, any internal mid-edge (i.e. any mid-edge not in ∂ ST ,L)

will contribute to two terms in the sum, and these two terms will cancel. Thus we are left with

precisely the contributions of those mid-edges in ∂ ST ,L:

−
∑

z∈α
F (z)+ j̄

∑

z∈ε−
F (z)+ j

∑

z∈ε+
F (z)+

∑

z∈β
F (z). (4.5)

On the other hand, if we set

σ =
π∓ 3θ

4π
then the identity (2.3) actually holds for any non-weighted vertex v, irrespective of the value

of y. (The proof is exactly the same as for Lemma 2.1.) So the only vertices in V (ST ,L) which

make a non-zero contribution to (4.4) are the weighted vertices on the β boundary. Since it is

impossible for a configuration to occupy all three mid-edges adjacent to a weighted vertex, we

need only consider the cases illustrated in Figure 4.4. If the leftmost configurations in Figure 4.4

are denoted γ1 and γ2 respectively, then the contributions from each triplet are

x |γ1|
c yν(γ1)nc(γ1)( j̄λ+ xcy jλ2+ xcy) =−x |γ1|

c yν(γ1)nc(γ1)(y − 1) j̄λ, (4.6)

x |γ2|
c yν(γ2)nc(γ2)( j λ̄+ xcy j̄ λ̄2+ xcy) =−x |γ2|

c yν(γ2)nc(γ2)(y − 1) j λ̄. (4.7)
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Figure 4.4: The two groupings of walks ending adjacent to a boundary vertex. The top three

lead to (4.6), and the bottom three lead to (4.7).

(As in the proof of Lemma 2.1, we define λ= e−iσπ/3 and j = e2iπ/3.) Now every configuration

ending at a mid-edge z ∈ β can be obtained uniquely by adding a step to a γ1 or γ2 configu-

ration. Moreover every γ1 configuration can be reflected in the horizontal axis to obtain a γ2

configuration (and vice versa). Using these facts together with (4.6) and (4.7), we find that the

contribution to (4.4) from weighted vertices is

−
y − 1

2xcy
( j λ̄+ j̄λ)

∑

z∈β
F (z). (4.8)

Equating (4.5) and (4.8) gives

0=−
∑

z∈α
F (z)+ j̄

∑

z∈ε−
F (z)+ j

∑

z∈ε+
F (z)+

�

1+
y − 1

2xcy
( j λ̄+ j̄λ)

�

∑

z∈β
F (z). (4.9)

As with the y = 1 case, we can write
∑

z∈β F (z) = BT ,L(x, y). We also have that

∑

z∈α
F (z) =DT ,L(x, y)+

1

2
(λ3+ λ̄3)AT ,L(x, y), (4.10)

where the DT ,L term arises because the empty walk is included in the sum on the left. Also,

j̄
∑

z∈ε−
F (z)+ j

∑

z∈ε+
F (z) =

1

2
( j̄ λ̄2+ jλ2)ET ,L(x, y). (4.11)

With these definitions it follows from (4.9) that

DT ,L(x, y) = cos

�

3(π±θ)
4

�

AT ,L(xc, y)+ cos

�

π±θ
2

�

ET ,L(xc, y)

+
�

1−
1

2
(1− y−1)x−2

c

�

BT ,L(xc, y),

from which the proposition follows. �

The identity (4.3) can be rewritten in the form

1= cos

�

3(π±θ)
4

�

A∗T ,L(xc, y)+ cos

�

π±θ
2

�

E∗T ,L(xc, y)+
y∗− y

y(y∗− 1)
B∗T ,L(xc, y) (4.12)
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where

A∗T ,L(x, y) :=
AT ,L(x, y)

DT ,L(x, y)
, B∗T ,L(x, y) :=

BT ,L(x, y)

DT ,L(x, y)
, and E∗T ,L(x, y) :=

ET ,L(x, y)

DT ,L(x, y)

can be considered as the “normalised” versions of A,B and E . Note that for the SAW case, n = 0

and DT ,L(x, y) = 1.

4.1.2 Self-avoiding walks in a strip

In this subsection and the next, we specialise to n = 0, corresponding to self-avoiding walks.

Here we will discuss some results for SAWs on strips of the honeycomb lattice, which can be

adapted in a very straightforward manner from existing results for the square lattice.

The usual model of surface-interacting walks considers walks originating in a surface and

interacting with monomers or edges in that surface. One way to study such systems is to con-

sider interacting walks in a strip, and then to take the limit as the strip width becomes infinite.

Clearly, if one studies walks in a strip, it is possible to consider interactions with one or both

boundaries.

To remain consistent with the previous subsection, we will consider walks which begin and

end on mid-edges of the lattice. We take a vertical strip of the honeycomb lattice, with walks

‘entering’ with a horizontal half-step to the left-hand boundary (in exactly the same manner as

the previous subsection – see for example Figure 4.2). We will associate a fugacity y with vertices

on the left-hand boundary and a fugacity z with those on the right. We consider three types of

walks in the strip of width T : those which start and end on the left boundary (loops), those

which start on the left and end on the right (bridges), and those which start on the left but may

end anywhere in the strip. (Clearly there is an analogy between the first two types and the walks

counted by the A and B generating functions defined in the previous subsection.)

Define then the quantities aT ,n(i , j ), bT ,n(i , j ) and cT ,n(i , j ) which count the number of n-

step walks in a strip of width T which start on the left boundary, visit i vertices on the left

boundary and j vertices on the right, and end, respectively, on the left, right or anywhere in the

strip. (Defined, of course, up to vertical translation.) The associated partition function is

AT ,n(y, z) =
∑

i , j

aT ,n(i , j )y i z j

for loops, and we likewise define the partition functions BT ,n(y, z) and CT ,n(y, z) for bridges and

general walks.

Proposition 4.4. The free energy for general walks in a strip of width T , for y, z > 0, is defined to

be

κT (y, z) = lim
n→∞

1

n
logCT ,n(y, z).
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It is finite, continuous, and non-decreasing in y and z, and is a convex function of log y and log z.

Moreover, κT is also given by

κT (y, z) = lim
n→∞

1

n
logAT ,n(y, z) = lim

n→∞

1

n
BT ,n(y, z).

Since BT ,n(y, z) = BT ,n(z, y), it follows that κT (y, z) = κT (z, y).

Proof. The equivalent results for the square lattice are presented in [115, Ch. 4 and 6]. There,

the authors demonstrate a relationship (Lemma 4.4) between the partition functions of walks

in a strip and unfolded walks in a strip. Unfolding a walk ω involves reflecting parts of ω in

horizontal lines, in such a way as to obtain a new walk ω′ with the property that the first

and last points of ω′ have minimal and maximal y-coordinates respectively.6 Unfolded walks

can thus be easily concatenated without creating self-intersections, and such concatenations can

result in loops or bridges if desired.

Then, in Lemma 4.5, the authors show that the concatenation of unfolded walks leads to a

submultiplicative sequence involving their partition functions, and using the same reasoning as

that behind Lemma 1.1, show that the free energy of unfolded walks exists. Finally, in Corol-

lary 4.7, the relationship between walks and unfolded walks is used to show that the free energy

of walks in a strip is the same as that of unfolded walks, and also that of loops and bridges.

All of these arguments apply equally well to walks on the honeycomb lattice. In particular,

they can be unfolded and concatenated in the same way as square lattice walks.

The convexity and continuity of κT on the square lattice is proved in [115, Lemma 6.6], and

that result also transfers over to the honeycomb lattice without difficulty. �

The identity (4.3) we derived in the previous subsection was concerned with a domain ST ,L

with walks starting on the left side and surface weights on the right side. If we send L→∞ then

the domain becomes a strip. We thus no longer need to consider surface weights on both sides

of the strip, and so we now define the generating function

AT (x, y) =
∑

n
AT ,n(1, y)xn

for loops in a strip of width T , and likewise the generating functions BT (x, y) and CT (x, y) for

bridges and general walks.

In this case the usual relationship between the free energy and radius of convergence holds,

and we see that for a given y > 0, the radius of convergence of AT (x, y) (and BT (x, y),CT (x, y))

is

ρT (y) = exp(−κT (1, y)).

Proposition 4.5. For y > 0,

κT (1, y)>κT−1(1, y).

6This is similar to the arguments behind Lemma 1.4.
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Moreover, as T →∞,

κT (1, y)→ κ(y),

whereκ(y) = bκ(log y) and bκ(α) is the free energy of adsorbing SAWs in a half-plane of the honeycomb

lattice, as defined in (4.1).

Proof. Since κT (1, y) = κT (y, 1), in this proof we switch to loops in a strip of width T with

surface interactions on the left-hand side of the strip. We say that a loop from mid-edge a to mid-

edge b is unfolded if the ordinate y(v) of every non-final vertex v of the walk satisfies y(a) ≤
y(v)< y(b ). Two unfolded loops can be concatenated (after deleting the last half-edge of the first

loop and the first half-edge of the second loop) to form a new unfolded loop. We say an unfolded

loop is irreducible if it is not the concatenation of two (or more) unfolded loops. Define ~AT (x, y)

to be the generating function of unfolded loops in the strip of width T with interactions on the

left-hand boundary of the strip.

As mentioned above, in [115, Corollary 4.7] it is shown that the free energy (and thus the

radius of convergence) of unfolded loops is the same as that of all loops. Moreover, any unfolded

loop can be uniquely decomposed into a sequence of irreducible loops, so we see that

~AT (x, y) =
PT (x, y)

1− PT (x, y)/(xy)
,

where PT (x, y) is the generating function of irreducible loops in a strip of width T . (The (xy)−1

term accounts for the half-edges which need to be removed when concatenating two loops and

the surface contact which occurs in both parts.)

Because any generating function for SAWs in a finite-width strip is rational (this follows from

transfer matrix methodology – see Subsection B.1.2 and e.g. [1]), and the radius of convergence

of ~AT (x, y) is ρT (y), we must have that

PT (ρT (y), y)

yρT (y)
= 1.

Now consider an irreducible unfolded loop w in a strip of width T which does not fit in a strip

of width T − 1. For example, the shortest such loop has length 4T + 3, and thus contributes

a term x4T+3y2 in the series PT (x, y) (see Figure 4.5). Let P̃T (x, y) = PT (x, y)− x4T+3y2. The

generating function of unfolded loops which do not contain such a loop as a factor is just

ÃT (x, y) =
P̃T (x, y)

1− P̃ (x, y)/(xy)
,

and if its radius of convergence is given by ρ̃T (y) then we have

P̃T (ρ̃T (y), y)

yρ̃T (y)
= 1.

But since P̃T (x, y)< PT (x, y) for x, y > 0, it must be that ρT (y)< ρ̃T (y).

147



Figure 4.5: The shortest irreducible unfolded loop spanning a strip of width T = 4.

Finally, because w does not fit in a strip of width T − 1, no unfolded loop counted by
~AT−1(x, y) can contain w as a factor. Hence, every object counted by ~AT−1(x, y) is also counted

by ÃT (x, y). So ρT−1(y) ≥ ρ̃T (y), and thus ρT−1(y) > ρT (y), or equivalently κT (1, y) >

κT−1(1, y).

The result that κT (1, y)→ κ(y) on the square lattice is proved in [115, Thm. 6.5]; the proof

for the honeycomb lattice is analogous. �

Finally, we prove a result which relates the critical surface fugacity yc, which demarcates the

adsorbed and desorbed phases of infinitely long polymers, to the radius of convergence ρT (y) of

walks in a strip.

Corollary 4.6. There exists a unique yT > 0 such that ρT (yT ) = xc = 1/µ, where µ =
Æ

2+
p

2

is the growth constant of the honeycomb lattice. The series (in y) AT (xc, y), BT (xc, y) and CT (xc, y)

have radius of convergence yT , and yT → yc as T →∞.

Proof. The existence of yT follows from the intermediate value theorem: ρT is continuous,

ρT (1) > xc and ρT (y) → 0 as y → ∞. The uniqueness of yT follows from the convexity of

κT (1, y) as a function of log y: there cannot exist two distinct points y, y ′ with ρT (y) = ρT (y
′) =

xc. This also naturally implies that

ρT (y)<ρT (yT ) ⇐⇒ y > yT and ρT (y)>ρT (yT ) ⇐⇒ y < yT .

Since ρT (yT ) = xc by definition of yT , it follows that yT must be the radius of convergence of

AT (xc, y),BT (xc, y) and CT (xc, y).

Now we prove that yT decreases to yc. Since ρT (y) > ρT+1(y), we have yT+1 < yT . Let

ȳ = limT→∞ yT . For y ≤ yc, we have ρT (y)> xc, so it must be that yT > yc for all T , and hence

ȳ ≥ yc. Since ȳ < yT , we have ρT (ȳ) > xc, and thus ρ(ȳ) ≥ xc, where ρ(y) = exp(−κ(y)) is the

radius of convergence of walks in the half-plane. But ρ(y) < xc for y > yc by definition of yc,

and thus ȳ ≤ yc. �
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After we take L → ∞ in our ST ,L domain, the generating functions in our identity (4.12)

(specifically, at n = 0 in the dilute regime) will be exactly AT (xc, y) and BT (xc, y) (with surface

weights associated with vertices on the right boundary). It is Corollary 4.6 that relates these

functions to the critical surface fugacity yc, and thus enables us to complete the proof that yc =

y∗.

4.1.3 The critical surface fugacity for SAWs is 1+
p

2

At n = 0, the identity (4.12) becomes, for the dense and dilute regimes respectively,

1= cos

�

3π(2± 1)

8

�

A∗T ,L(xc, y)+ cos

�

π(2± 1)

4

�

E∗T ,L(xc, y)+
y∗− y

y(y∗− 1)
B∗T ,L(xc, y)

=∓

Æ

2±
p

2

2
AT ,L(xc, y)∓

1
p

2
ET ,L(xc, y)+

y∗− y

y(y∗− 1)
BT ,L(xc, y), (4.13)

where

xc =
Æ

2∓
p

2, y∗ = 1∓
p

2.

Note that at n = 0 we have DT ,L(xc, y) = 1, so the generating functions are equal to their nor-

malised counterparts.

As seen in [34], the identity (4.13) provides easy bounds, existence of limits, etc. if all coef-

ficients are positive, so we now consider only the dilute regime. We denote

cα = cos
�3π

8

�

=

Æ

2−
p

2

2
, cε = cos

�π

4

�

=
1
p

2

cβ(y) =
y∗− y

y(y∗− 1)
=

1+
p

2− y
p

2y
,

so that the identity of interest is

1= cαAT ,L(xc, y)+ cεET ,L(xc, y)+ cβ(y)BT ,L(xc, y). (4.14)

For y < y∗, the coefficients cα, cε and cβ(y) are positive. Since AT ,L(xc, y) and BT ,L(xc, y) are

clearly non-decreasing in L (for non-negative y), we can take the limit L→∞ in (4.14) to obtain

1= cαAT (xc, y)+ cεET (xc, y)+ cβ(y)BT (xc, y), (4.15)

where AT (x, y) and BT (x, y) were defined in the previous subsection (they are, respectively, the

generating functions of loops and bridges in a strip of width T ) and ET (x, y) is defined to be

ET (x, y) = lim
L→∞

ET ,L(x, y).

Lemma 4.7. The critical surface fugacity yc satisfies

yc ≥ y∗.
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Proof. The identity (4.15) shows that AT (xc, y) and BT (xc, y) are bounded, and thus convergent,

for y < y∗. Hence ρT (y)> xc for y < y∗, and then ρ(y) = limT→∞ρT (y)≥ xc. But by definition

of yc, ρ(y)< xc for y > yc, so we must have yc ≥ y∗. �

Corollary 4.8. For 0≤ y < y∗,

lim
L→∞

ET ,L(xc, y)≡ ET (xc, y) = 0,

and hence

1= cαAT (xc, y)+ cβ(y)BT (xc, y). (4.16)

Proof. In the proof of Lemma 4.7 we showed ρT (y) > xc for y < y∗. Since ρT (y) is also the

radius of convergence of CT (x, y), we must then have

∑

L

ET ,L(xc, y)≤CT (xc, y)<∞,

and thus limL→∞ ET ,L(xc, y) = 0. �

Now consider the identity (4.16) at y = 1:

1= cαAT (xc, 1)+BT (xc, 1).

Since AT (xc, 1) is non-decreasing with T and bounded above by 1/cα, it must have a finite limit

as T →∞. Hence, so too must BT (xc, 1). We define

δ = lim
T→∞

BT (xc, 1) = 1− lim
T→∞

cαAT (xc, 1).

Proposition 4.9. If δ = 0, then y∗ ≥ yc, and hence y∗ = yc.

Proof. As in Corollary 4.6, define yT to be the radius of convergence of CT (xc, y), so that

limT→∞ yT = yc, and AT (xc, y) and BT (xc, y) are convergent on 0≤ y < yT .

Walks counted by AT+1(x, y) and not AT (x, y) must at some point touch the β boundary

of the strip of width T + 1; they can thus be decomposed into a pair of bridges (see Figure 4.6).

This leads to the inequality

AT+1(xc, y)−AT (xc, 1)≤ xcBT (xc, 1)BT+1(xc, y), (4.17)

valid for 0≤ y < yT+1. Using (4.16) to eliminate the two A terms, we obtain

BT (xc, 1)− cβ(y)BT+1(xc, y)≤ cαxcBT (xc, 1)BT+1(xc, y),

and hence

0≤
1

BT+1(xc, y)
≤ cαxc+

cβ(y)

BT (xc, 1)
= cαxc+

1

BT (xc, 1)

y∗− y

y(y∗− 1)
.
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Figure 4.6: Factorisation of a loop of height T + 1 into two bridges, of height T + 1 and T

respectively. (In this figure the strip is oriented horizontally, rather than vertically.)

In particular, for y < yc = limT→∞ yT ,

0≤ cαxc+
1

BT (xc, 1)

y∗− y

y(y∗− 1)
. (4.18)

Now recall that, by assumption, BT (xc, 1)→ δ = 0. If yc > y∗, then for any y with y∗ < y < yc,

the right side of (4.18) will become arbitrarily large (in modulus) and negative as T →∞. Thus,

we are forced to conclude that yc ≤ y∗. �

It is clear then that the proof that yc = 1+
p

2 depends entirely on BT (xc, 1)→ 0 as T →∞.

The proof of this fact is presented in Appendix A; it is due primarily to Hugo Duminil-Copin,

and is of a markedly different style to the majority of the work in the rest of this thesis.

4.1.4 Rotated honeycomb lattice

If we rotate the honeycomb lattice through 90◦ (or alternatively, rotate the surface – either way,

we end up with lattice edges parallel to the surface, rather than perpendicular), we can now

put weights on the surface vertices and again ask where the adsorption transition occurs (see

Figure 4.8). See Figure 4.7 for a SAW interacting with an impenetrable surface in this new

orientation. Batchelor, Bennett-Wood and Owczarek conjecture [6] that the critical surface

fugacity is

yc =

√

√

√

√

√

2+
p

2

1+
p

2−
Æ

2+
p

2
= 2.455 . . . ,

based on the Bethe Ansatz solution to the O(n) loop model on the honeycomb lattice.

Our method for proving the critical fugacity in the original orientation (i.e. the presentation

of the previous subsections) can be adapted to this situation, and the proof is only slightly more

complicated than before. In the same way as the previous proof, it depends on us being able to

prove that BT (x), the generating function of bridges which span a strip of width T , vanishes as

T →∞ when x = xc = 1/
Æ

2+
p

2. We expect that the proof of this fact will follow in much
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Figure 4.7: A SAW interacting with an impenetrable surface (the left hand side of the picture) in

the rotated orientation. (Note that the lattice now contains edges parallel to the surface.) This

orientation is the focus of Subsection 4.1.4.

ε+ε+ ε+

ε−ε− ε−

αO+

αO−

αI+

αI−

β+

β−

β+

β−

β−

β+
a

Figure 4.8: The domain we will use in the proof, with the weighted vertices on the β boundary

indicated. Walks start at mid-edge a. The labels on the external mid-edges indicate the set

containing the walks which end there. (The external mid-edges above and below a will not play

a part in our identity, and thus are not shown in the figure.) This domain has height 2L+ 1= 5

and width T = 5; in the weighted case we will require L+T ≡ 1 (mod 2), so as to be sure we can

pair the B+ and B− mid-edges appropriately.
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the same way as that in Appendix A, but have not yet had the chance to complete it. In this

subsection, then, we prove a result equivalent to Proposition 4.9.

First we consider the unweighted case, as there are already a number of factors which com-

plicate the situation compared to the geometry used by Duminil-Copin and Smirnov. As before,

we use the parafermionic observable

F (z) =
∑

γ⊂Ω:a→z

e−iσW (γ :a→z)x |γ |,

where a is a mid-edge on the boundary of the domain and z is any mid-edge in the domain.

Then as always, Lemma 2.1 holds for any vertex v ∈V (Ω). For now we will consider only the

n = 0 case in the dilute regime, so that x = xc = 1/
Æ

2+
p

2 and σ = 5/8. (Later in this section

we consider the more general model.)

We will work in a domain as illustrated in Figure 4.8, with width T and height 2L+ 1. (We

are initially ignoring the weights on the β boundary.) SAWs start at the mid-edge a, in the

middle of the left-hand side of the domain, and end on external mid-edges, which fall into one

of 8 classes (shown in the figure). Because, for reasons of symmetry, we cannot take a to be an

external mid-edge, we end up having to count self-avoiding polygons (i.e. walks which start and

end at a) as well. Our identity in this geometry is the following. Define

AO
T ,L(x) =

∑

γ :a→αO+⋃αO−

x |γ | AI
T ,L(x) =

∑

γ :a→αI+⋃αI−

x |γ |

ET ,L(x) =
∑

γ :a→ε+
⋃

ε−
x |γ | BT ,L(x) =

∑

γ :a→β+
⋃

β−
x |γ |

PT ,L(x) =
∑

ρ3a
x |ρ|

where the last sum is over all undirected (non-empty) self-avoiding polygons in the domain which

contain the mid-edge a.

Proposition 4.10. The generating functions AO
T ,L,AI

T ,L, ET ,L,BT ,L and PT ,L, evaluated at x = xc,

satisfy the identity

1

2

q

2−
Æ

2−
p

2AO
T ,L(xc)+

1

2

q

2−
Æ

2+
p

2AI
T ,L(xc)+

1

2

q

2+
Æ

2−
p

2 ET ,L(xc)

+
1

2

q

2+
Æ

2+
p

2BT ,L(xc)+

Ç

4+ 2
p

2−
q

2(10+ 7
p

2)PT ,L(xc)

=

s

2−
p

2+

È

1

2

�

2−
p

2
�

(4.19)

Proof. We would like winding angle of the reflection (through the horizontal axis) of a walk to

be the negative of that of the original walk. We also require that all the walks ending on a given

external mid-edge have the same winding angle. This results in a strange situation: the empty
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0 π/6 π/2

−π/6 π/6 π/2

Figure 4.9: Examples of some walks on the rotated honeycomb domain, with their winding

angles indicated. Non-empty walks “begin” with a winding angle ±π/2, depending on whether

they start in the up or down direction.

walk must have winding angle 0 (it is its own reflection), but a non-empty walk must “begin”

with a winding angle of±π/2 (depending on whether it starts in the up or down direction from

a).7 We provide some small examples for illustrative purposes in Figure 4.9.

Now the identity (2.3) will hold for any vertex v which is not adjacent to the origin a.

(The proof is completely identical.) It will, however, fail at the two vertices above and below

a, for the reasons described above: the empty walk has winding angle 0, but non-empty walks

begin with non-zero winding. Thus, we sum (2.3) over all vertices in the domain except the ones

immediately above and below a. Clearly this sum adds to 0.

On the other hand, we can compute the sum by noting that any mid-edge adjacent to two

of the vertices summed over will contribute 0 to the sum. The remaining mid-edges are then

the external ones marked as in Figure 4.8, as well as the two adjacent to the vertices above

and below a, which we will denote by ζ and ζ̄ respectively. If we define j = exp(5πi/6) and

θ= exp(−iσ) = exp(−5i/8), then the coefficients of the walks ending on external mid-edges are

αO+ : jθ5π/6 = exp(5πi/16) αO− : j̄θ−5π/6 = exp(−5πi/16)

αI+ : j̄θ7π/6 = exp(7πi/16) αI− : jθ−7π/6 = exp(−7πi/16)

ε+ : iθπ/2 = exp(3πi/16) ε− : −iθ−π/2 = exp(−3πi/16)

β+ : − j̄θπ/6 = exp(πi/16) β− : − jθ−π/6 = exp(−πi/16)

There are two types of walks ending at ζ and ζ̄ : those with winding ±π/6 and those with

winding ∓7π/6. The first type comprises only one walk for each of ζ and ζ̄ : a single step

7An alternative way to view this situation is to consider the empty walk to be comprised of a “right step of

length 0”. Then non-empty walks actually begin with a turn of angle ±π/2.
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through the vertex above/below a. The contribution of these walks is thus

j̄θπ/6xc+ jθ−π/6xc =−

s

2−
p

2+

È

1

2

�

2−
p

2
�

.

The second type of walks loop around almost all the way back to a: it seems sensible to then

just add a step and be left with self-avoiding polygons containing the mid-edge a. If PT ,L(x) is

the generating function for undirected polygons, then the contribution of these walks is
 

j̄θ7π/6

xc
+

jθ−7π/6

xc

!

PT ,L(xc) =
Ç

4+ 2
p

2−
q

2
�

10+ 7
p

2
�

PT ,L(xc).

For the walks ending on external mid-edges, just note that we can pair walks (via reflec-

tion through the horizontal axis) ending in τ+ and τ−, where τ is any of αO ,αI ,ε,β. So the

contributions of these walks are

αO+ ∪αO− :

 

jθ5π/6+ j̄θ−5π/6

2

!

AO
T ,L(xc) =

1

2

q

2−
Æ

2−
p

2AO
T ,L(xc)

αI+ ∪αI− :

 

j̄θ7π/6+ jθ−7π/6

2

!

AI
T ,L(xc) =

1

2

q

2−
Æ

2+
p

2AI
T ,L(xc)

ε+ ∪ ε− :

 

iθπ/2− iθ−pi/2

2

!

ET ,L(xc) =
1

2

q

2+
Æ

2−
p

2ET ,L(xc)

β+ ∪β− :

 

− j̄θπ/6− jθ−π/6

2

!

BT ,L(xc) =
1

2

q

2+
Æ

2+
p

2BT ,L(xc)

Adding all the above contributions and equating with 0 gives the proposition. �

We now introduce the the surface weights on the β boundary (as shown in Figure 4.8).

Define the same generating functions as before, but now with a variable y keeping track of the

number of surface contacts:

AO
T ,L(x, y) =

∑

γ :a→αO+⋃αO−

x |γ |yν(γ ), AI
T ,L(x, y) =

∑

γ :a→αI+⋃αI−

x |γ |yν(γ ),

ET ,L(x, y) =
∑

γ :a→ε+
⋃

ε−
x |γ |yν(γ ), BT ,L(x, y) =

∑

γ :a→β+
⋃

β−
x |γ |yν(γ ),

PT ,L(x, y) =
∑

ρ3a
x |ρ|yν(ρ).

Proposition 4.11. The functions AO
T ,L(x, y), AI

T ,L(x, y), ET ,L(x, y), BT ,L(x, y) and PT ,L(x, y), eval-

uated at x = xc, satisfy the functional equation

1

2

q

2−
Æ

2−
p

2AO
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1

2

q

2−
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2+
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2AI
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q

2+
Æ

2−
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+ cβ(y)BT ,L(xc, y)+

Ç
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2−
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p
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s

2−
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È
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2
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2−
p

2
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,

(4.20)
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where

cβ(y) =
cβ

xcy(1+ xcy)
−

xcy
q

2−
Æ

2−
p

2

2(1+ xcy)

and

cβ = cβ(1) =
1

2

q

2+
Æ

2+
p

2.

In particular, cβ(y) is a positive, non-increasing function of y on (0, y†) where

y† =

√

√

√

√

√

2+
p

2

1+
p

2−
Æ

2+
p

2

and cβ(y
†) = 0.

Proof. We again sum the LHS of (2.3) over all vertices except the two adjacent to a. When y 6= 1

the contribution of β vertices will not be 0, but can instead be written as a multiple of the BT ,L

generating function.

A β+ walk must approach its final vertex either from the north-east or from the south. Let

γ1 be a walk approaching a β+ vertex from the north-east, and say γ l
1 and γ r

1 are the walks

obtained by appending a left or right turn to γ1 respectively. Then the sum of the contributions

of γ1,γ l
1 and γ r

1 is

x |γ1|
c yν(γ1)( jθ−π/6+ xcy(− j̄ )θπ/6+ xcy(−i)θ−π/2).

Similarly, let γ2 be a walk approaching a β+ vertex from the south, and γ l
2 and γ r

2 its two

extensions. Then the contribution of these three walks is

x |γ2|
c yν(γ2)(−iθπ/2+ xcy jθ5π/6+ xcy(− j̄ )θπ/6)

Now any walk finishing adjacent to aβ+ vertex must be described by exactly one of γ1,γ l
1 ,γ r

1 ,γ2,γ l
2 ,γ r

2 .

So if G1
T ,L(x, y) and G2

T ,L(x, y) are the generating functions for γ1 and γ2 walks respectively, the

contribution of all β+ vertices is

( jθ−π/6+ xcy(− j̄ )θπ/6+ xcy(−i)θ−π/2)G1
T ,L(xc, y)

+ (−iθπ/2+ xcy jθ5π/6+ xcy(− j̄ )θπ/6)G2
T ,L(xc, y). (4.21)

But now it’s easy to see that any reflected γ1 walk can be extended to a unique γ2 walk, and any

γ2 walk is an extension of a unique reflected γ1 walk. So in fact

G2
T ,L(x, y) = xyG1

T ,L(x, y).

So (4.21) becomes

( jθ−π/6+ xcy(− j̄ )θπ/6+ xcy(−i)θ−π/2+ xcy(−i)θπ/2+ x2
c y2 jθ5π/6+ x2

c y2(− j̄ )θπ/6)G1
T ,L(xc, y)

(4.22)
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Since any β+ vertex can be reflected to give a β− vertex, the contribution of β− vertices is

( j̄θπ/6+ xcy(− j )θ−π/6+ xcyiθπ/2+ xcyiθ−π/2+ x2
c y2 j̄θ−5π/6+ x2

c y2(− j )θ−π/6)G1
T ,L(xc, y)

(4.23)

Now any walk counted by BT ,L can be obtained by extending a unique G1
T ,L walk (or a reflected

one) by either a single step or by two steps. Similarly, any G1
T ,L walk (or a reflected one) can be

extended by one or two steps to give a BT ,L walk. So we have

BT ,L(x, y) = 2(xy + x2y2)G1
T ,L(x, y) (4.24)

So by adding (4.22) and (4.23) and substituting (4.24), we find that the contribution of all β+

and β− vertices is
n0+ n1y + n2y2

d1y + d2y2
BT ,L(xc, y)

with n0, n1, n2, d1, d2 as defined in the proposition.

Now nothing has changed from the unweighted case for the other external mid-edges (and

the two special mid-edges ζ and ζ̄ ), so we obtain

1
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1
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1
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+
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2)PT ,L(xc, y)

=

s
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2+

È
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2

�

2−
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�

+
n0+ n1y + n2y2

d1y + d2y2
BT ,L(xc, y)

from the which the proposition immediately follows. �

Here we will omit discussion of results analogous to those of Subsection 4.1.2, and will

merely point out tha the same arguments apply to the rotated honeycomb lattice.8 We will use

the same notation as before, and define the free energy κT (1, y) for walks9 in a strip of width T

with fugacity y associated with vertices on the right-hand side of the strip. Then as before, the

free energy κ(y) of walks in a half-plane satisfies

lim
T→∞

κT (1, y) = κ(y).

The radius of convergence of all the generating functions of walks in the strip is given by ρT (y) =

exp(−κT (1, y)), and again we define ρ(y) = limT→∞ρT (y). Finally, yT is defined to be the

8Actually, the process of unfolding is a little more complicated in this situation, because the lattice is not invariant

under reflection through a horizontal line passing through a vertex. This means that an edge must be inserted when

concatenating two pieces of a walk after one has been reflected. It is straightforward to show that when unfolding

a walk of length n, one needs to use only O(
p

n) reflections, and so in the end this does not invalidate any of the

arguments. Since this is currently work in progress (and in this thesis we will not actually complete the proof of the

critical surface fugacity), we will include further details in a later publication.
9Regardless of whether they end on the left, right or anywhere in the strip.
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unique value of y satisfying ρT (yT ) = xc = 1/
Æ

2+
p

2, and then it can be shown that yc, the

critical fugacity of walks in a half-plane, satisfies yc = limT→∞ yT .

Proposition 4.12. If it can be shown that

lim
T→∞

BT (xc, 1)≡ B(xc, 1) = 0

then yc = y†.

This proof is essentially the same as that of Proposition 4.9, except for the added complica-

tion of two different A generating functions and the P generating function.

For y < y†, every term in (4.20) is non-negative, and since every generating function ex-

cept ET ,L is clearly non-decreasing with L, it follows that ET ,L must be non-increasing. Hence

everything has a limit in L, so we can take that limit and get

1
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q
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Æ

2−
p

2AO
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1

2

q

2−
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2+
p

2AI
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1

2

q
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Æ
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Ç
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2(10+ 7
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È
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2
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2
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(4.25)

In an obvious shorthand we rewrite (4.25) as

cO
α AO

T (xc, y)+ c I
αAI

T (xc, y)+ cεET (xc, y)+ cπPT (xc, y)+ cβ(y)BT (xc, y) = cRHS. (4.26)

Lemma 4.13. The critical surface fugacity yc satisfies

yc ≥ y†.

Proof. The identity (4.26) shows that, for y < y†, the generating function AO
T (xc, y) (among oth-

ers) is bounded, and thus convergent. Hence ρT (y) > xc for y < y†, and then limT→∞ρT (y) =

ρ(y)≥ xc. But by definition of yc, ρ(y)< xc for y > yc, and thus we must have yc ≥ y†. �

Corollary 4.14. For 0≤ y < y†,

lim
L→∞

ET ,L(xc, y)≡ ET (xc, y) = 0,

so that

cO
α AO

T (xc, y)+ c I
αAI

T (xc, y)+ cπPT (xc, y)+ cβ(y)BT (xc, y) = cRHS. (4.27)

Proof. The proof is the same as for Corollary 4.8. The radius of convergence of CT (x, y), the

generating function of all walks in the strip starting at the point a, is ρT (y), and since ρT (y)> xc

for 0≤ y < y†, we have
∑

L

ET ,L(xc, y)≤CT (xc, y)<∞,

which gives the result of the lemma. �
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Figure 4.10: Factorisation of a walk counted by AO
T+1 into two bridges. In this figure the strip is

oriented horizontally, rather than vertically.

Now consider the identity (4.27) at y = 1:

cO
α AO

T (xc, 1)+ c I
αAI

T (xc, 1)+ cπPT (xc, 1)+ cβBT (xc, 1) = cRHS. (4.28)

Since AO
T (xc, 1), AI

T (xc, 1) and PT (xc, 1) are all non-decreasing with T and bounded above by (4.28),

they must have limits in T . Hence, so too must BT (xc, 1). We will denote

δ = lim
T→∞

cβBT (xc, 1).

Proof of Proposition 4.12. Recall that yT is the radius of convergence of CT (xc, y) as well as all

functions in (4.27).

In the same way that we decomposed walks counted by AT+1(xc, y)−AT (xc, 1) in the proof

of Proposition 4.9, we can decompose walks counted by

AO
T+1(xc, y)−AO

T (xc, 1),

AI
T+1(xc, y)−AI

T (xc, 1), and

PT+1(xc, y)− PT (xc, 1)

into pairs of bridges. For example, we have

AO
T+1(xc, y)−AO

T (xc, 1)≤ BT+1(xc, y)BT (xc, 1).

See Figure 4.10 for an illustration.

Combining this decomposition for AO ,AI and P , we find for 0≤ y < yT+1,

cO
α [A

O
T+1(xc, y)−AO

T (xc, 1)]+ c I
α[A

I
T+1(xc, y)−AI

T (xc, 1)]+ cπ[PT+1(xc, y)− PT (xc, 1)]

≤ (cO
α + c I

α+ cπ)BT+1(xc, y)BT (xc, 1). (4.29)

Using (4.27) to eliminate the AO ,AI and P terms, we obtain

cβBT (xc, 1)− cβ(y)BT+1(xc, y)≤ (cO
α + c I

α+ cπ)BT+1(xc, y)BT (xc, 1),
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and hence

0≤
1

BT+1(xc, y)
≤

cO
α + c I

α+ cπ
cβ

+
cβ(y)

cβBT (xc, 1)
. (4.30)

In particular, for 0≤ y < yc = limT→∞ yT and for any T ,

0≤
cO
α + c I

α+ cπ
cβ

+
cβ(y)

cβBT (xc, 1)
.

Taking T →∞, we find

0≤
cO
α + c I

α+ cπ
cβ

+
cβ(y)

δ
. (4.31)

Now by assumption, δ = 0. Suppose (for a contradiction) that yc > y†. Then for any y† <

y < yc, the RHS of (4.31) will be arbitrarily large in modulus and negative, contradicting the

inequality. Thus, we are forced to conclude yc ≤ y†, and hence yc = y†. �

General n

We conclude this section by generalising the identities for the rotated honeycomb lattice to the

O(n) loop model with n ∈ [−2,2]. As with the original orientation, we let n = 2cosθ with

θ ∈ [0,π]. Then the local cancellation identity (2.3) holds for

σ =
π− 3θ

4π
, x−1

c = 2cos

�

π+θ

4

�

=
Æ

2−
p

2− n or

σ =
π+ 3θ

4π
, x−1

c = 2cos

�

π−θ
4

�

=
Æ

2+
p

2− n

Following the same method as for SAWs, we obtain the same identity as before, with a few

differences:

• Obviously all generating functions now have an additional variable n.

• The coefficients of each generating function now depend on n (via θ, via σ , via θ) but are

calculated in exactly the same way as before.

• The closed loop counted by P which passes through a will not naturally pick up a weight

of n (since it’s really a SAW which finishes just above or below a), but for consistency we

can artifically insert an extra factor of n and then divide the coefficient cπ by n.

• The objects that contributed to the RHS of (4.19) and (4.20) (single steps up or down) now

become generating functions of these objects plus closed loops. If we absorb a factor of

xc into the coefficient then this is the generating function of the empty walk plus closed

loops which do not contain the mid-edge a.

(It would be nice if we could combine the generating functions of closed loops which do or do

not contain a, but unfortunately the coefficients just don’t match.)

Following all this through, we end up with
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Proposition 4.15. If n = 2cosθ with θ ∈ [0,π] and x−1
c = 2cos((π∓θ)/4) then
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BT ,L(xc, y)

= 2xc cos

�

π∓θ
8

�

DT ,L(xc, y) (4.32)

where in each generating function n is conjugate to the number of closed loops, and DT ,L is the

generating function of the empty walk and the configurations containing only closed loops which do

not pass through the mid-edge a.

The first equation in (4.32) corresponds to the smaller value of xc and thus describes the

so-called dilute regime (where fewer closed loops are favoured), while the second describes the

dense regime. When θ→π/2 (so n→ 0), the dilute equation exactly reduces to (4.20).

We note here that, while we know of no existing conjectures for the critical surface fugacity

for the O(n) loop model in this geometry, we might expect that, as with the original orientation,

this critical value yc(n) is the function satisfying cβ(yc(n)) = 0. This leads us to formulate the

following conjecture.

Conjecture 4.16. For the O(n) loop model with n ∈ [−2,2] on the honeycomb lattice with an

impenetrable surface, oriented so that the lattice contains edges parallel to the surface, associate a

fugacity x = xc = 1/
Æ

2+
p

2− n with occupied vertices, a fugacity n with closed loops and a

fugacity y with occupied vertices on the surface. Then the model undergoes a surface transition at

y = yc(n) =

√

√

√

√

√

2+
p

2− n

1+
p

2− n−
Æ

2+
p

2− n
.

4.2 Numerical estimates

In Section 2.2, we showed that the identity of Duminil-Copin and Smirnov [34] on the honey-

comb lattice,

cαAT (xc)+BT (xc) = 1,

could be used to obtain estimates for the growth constants (and other quantities) of the square

and triangular lattices. It seems reasonable then to suppose that identities like (4.16) and (4.27)

which incorporate a surface fugacity y, and which display special behaviour at the critical value

of that surface fugacity, might be useful for computing estimates on other lattices. In this section
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we show that this is indeed the case, and we compute estimates for the critical fugacities of a

number of adsorption models on the honeycomb, square and triangular lattices.

Recall the identity (4.15),

1= cαAT (xc, y)+ cεET (xc, y)+ cβ(y)BT (xc, y),

where

cα = cos
�3π

8

�

=

Æ

2−
p

2

2
, cε = cos

�π

4

�

=
1
p

2

cβ(y) =
yc− y

y(yc− 1)
=

1+
p

2− y
p

2y
.

This identity is valid for all y, and in particular for 0 ≤ y ≤ yc = 1+
p

2. It was proved in

Section 4.1 that ET (xc, y) = 0 for 0≤ y < yc. In fact we are able to compute the exact generating

functions AT ,BT and ET for T = 0,1,2, and for those values of T we observe ET (xc, yc) = 0. We

thus make the following conjecture.

Conjecture 4.17. On the honeycomb lattice,

lim
L→∞

ET ,L(xc, yc)≡ ET (xc, yc) = 0 (4.33)

for all T ≥ 0.

For the rest of this section we will take Conjecture 4.17 as given. (Since this section is devoted

to numerical estimates, such an assumption is quite reasonable.)

In light of Conjecture 4.17, at y = yc = 1+
p

2, the identity (4.15) reduces to

cαAT (xc, yc) = 1. (4.34)

For other lattices we do not have an equivalent identity. However if one plots AT (xc, y) versus

y in these cases, one might be forgiven for thinking that such an identity exists. In Figure 4.11

we show a plot of AT (xc, y) versus y on the square lattice for a range of strip widths T (with

the weight y corresponding to vertices in the surface, and with x evaluated at the current best

estimate for xc, namely 0.37905227776). To graphical accuracy it appears that there is a unique

point of intersection for plots corresponding to higher values of T . Even finer resolution (see

inset) suggests that this is the case. The actual small deviation can be seen from the data given in

Table 4.3.

We denote by y∗(T ) the point of intersection of AT (xc, y) and AT+1(xc, y). We observe that

the sequence {y∗(T )} is a monotone function of T . We argue, as in Section 2.2, that in the scaling

limit all two dimensional SAW models are given by the same conformal field theory. (Supported

also by [22].) Since it is known for one of these models (i.e. honeycomb lattice SAWs) that the

critical point can be found by locating the point y∗ which satisfies (4.34), it follows that in the
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Figure 4.11: Square lattice with surface vertex interactions. AT (xc , y) versus y for T = 1 . . . 15.

Inset shows the intersection region in finer scale.

scaling limit the same should be true for all two-dimensional SAWs. This is entirely consistent

with our observations, and suggests that limT→∞ y∗(T ) = yc.

This then suggests a potentially powerful new numerical approach to estimating yc. One

calculates the generating functions AT (xc, y), for all strip widths T = 0,1,2, . . .Tmax, uses these to

calculate y∗(T ) for T = 0,1,2, . . .Tmax−1 as defined above, and then extrapolates this monotone

sequence by a variety of standard sequence extrapolation methods. This is of course essentially

the same idea we employed in Section 2.2.

In Subsection B.1.2 we describe the derivation of the generating functions AT (xc, y) by the

finite-lattice method for a range of strip widths T that are needed in this study. For the value of

the critical step fugacity xc, we use the exact result xc = 1/
Æ

2+
p

2 for the honeycomb lattice,

and the best available series estimates in the case of the square and triangular lattices. These are

xc(sq) = 0.37905227776 [77, 72], with uncertainty in the last digit, and xc(tr) = 0.2409175745

[75], with similar uncertainty. We performed a sensitivity analysis of our critical surface fugac-

ity estimates in order to determine how sensitive they are to uncertainties in our estimates of xc.

The estimates of xc are sufficiently precise that a change in our estimate of xc by a factor of 10

times the estimated uncertainty will not change our estimates of the surface fugacity yc in even

the least significant digit.

In Subsections 4.2.1–4.2.3 we estimate the critical fugacities by extrapolating y∗(T ) using a

range of standard extrapolation algorithms. These are Levin’s u-transform, Brezinskii’s θ al-

163



Figure 4.12: The double-vertex model on the honeycomb lattice, with the weighted vertices on

the surface indicated.

gorithm, Neville tables, Wynn’s ε algorithm and the Barber-Hamer algorithm. Descriptions

of these algorithms, and codes for their implementation, can be found in [52]. However, we

find the most precise estimates are given by the Bulirsch-Stoer algorithm [21]. This algorithm

requires a parameter w, which can be thought of as a correction-to-scaling exponent. For the

purpose of the current exercise, we have set this parameter to 1, corresponding to a T −2 cor-

rection term as observed. Our implementation of the algorithm is precisely as described by

Monroe [88], and we retained 50 digit precision throughout.

We used this method to estimate the critical fugacity for a number of cases of interest for two-

dimensional SAWs. We note that, as described in the previous section, there are two different

orientations of the honeycomb lattice; we restrict ourselves here to the orientation considered

in Subsections 4.1.1–4.1.3 (see, for example, Figure 4.3). For the vertex weighted model, we

have already proved (recall Section 4.1) that yc = 1+
p

2, as conjectured by Batchelor and Yung

[7]. It is a straightforward consequence of this result – the argument is given in Subsection 4.2.1

below – that for the edge weighted model, the critical fugacity is
Æ

1+
p

2. We introduce here

another model on the honeycomb lattice, which we call the double-vertex weighted model – see

Figure 4.12. For that model, we estimate the critical fugacity to be yc = 1.46767 where the error

in this estimate (and all such estimates given below), is expected to be confined to a few parts in

the last quoted digit. We know of no other estimate of this quantity in the literature.

In Subsection 4.2.2 we discuss the critical fugacity for vertex and edge weighted adsorption

on the square lattice. The only previous estimates for the vertex weighted case can be found in

[117], where Monte Carlo methods were used to obtain the estimate yc(vertex) = 1.76± 0.02.

Our estimate, yc(vertex) = 1.77564 is three orders of magnitude more precise than this. For the

edge weighted case, a transfer matrix estimate is given in [50], and is yc(edge) = 2.041± 0.002.
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In [49] a Monte Carlo estimate of comparable precision is given, yc(edge) = 2.038± 0.002. Our

estimate is yc(edge) = 2.040135, again some three orders of magnitude more precise.

For the triangular lattice, discussed in Subsection 4.2.3 we are unaware of any previous in-

vestigations of the critical fugacity. We find, in Subsection 4.2.3, that yc(vertex) = 2.144181 and

yc(edge) = 2.950026. We repeat that errors in our quoted estimates are expected to be confined

to a few parts in the last quoted digit.

We note here that, as with Section 2.2, the estimates computed in this section are biased, as

they rely on unproven assumptions regarding the limiting behaviour of the generating functions

AT (xc, yc),BT (xc, yc) and ET (xc, yc). While, as discussed above, we have reasons to believe that

these assumptions are valid, it should be remembered that there are no guarantees that these

estimate are accurate.

4.2.1 Honeycomb lattice

In Section 4.1 we proved that the critical fugacity for the case of interacting vertices on the

honeycomb lattice is yc = 1+
p

2. It is a straightforward consequence of the proof given in

Section 4.1 that yc =
Æ

1+
p

2 in the edge weighted case. The proof of this result, in outline,

is the following: We denote the generating functions A and B , as defined in Section 4.1 for the

vertex case, by subscript v (for vertex). We denote the corresponding generating functions for

the case with edge weighting with the subscript e. Then it is clear by inspection that Ae(xc, y) =

Av(xc, y2), as every time a walk contributing to the A generating function passes through n

surface vertices, whether adjacent or not, it must pass through 2n surface edges.

By the same argument, every time a walk contributing to the B generating function passes

through n surface vertices, whether adjacent or not, it must pass through 2n− 1 surface edges.

This then gives rise to Be(xc, y) = 1
y Bv(xc, y2). From either of these two equations it follows that

yc(vertex) = (yc(edge))2, hence yc(edge) =
Æ

1+
p

2.

We now consider the double-vertex weighted model. We generated data for AT (xc, y) for

T ≤ 14 as described in Subsection B.1.2, and found the intersection points where AT (xc, y) =

AT+1(xc, y), which defines y∗(T ). These data are tabulated in Table 4.1. Extrapolating y∗(T ) as

described above, we estimate

yc(double) = 1.46767.

We also find, by an identical method of extrapolation, that A(xc, yc) = 2.613, which is probably

exactly sec(3π/8), as is the case when considering interactions with surface vertices, see (4.34).

4.2.2 Square lattice

We next consider data for the square lattice, with every surface vertex carrying a fugacity y.

We generated data for AT (xc, y) for T ≤ 15 as described in Subsection B.1.2, and found the

intersection points where AT (xc, y) =AT+1(xc, y), which defines y∗(T ). These data are tabulated
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Table 4.1: Estimates of y∗(T ) and AT (xc, y∗(T )) for the honeycomb lattice double-vertex model.

T y∗(T ) AT (xc, y∗(T ))

1 1.474342684974343 2.758023465753132

2 1.471231066324457 2.699581979117133

3 1.469859145369675 2.671309655463187

4 1.469144651946551 2.655387366045945

5 1.468728339703417 2.645467247042683

6 1.468465540675101 2.638829094236329

7 1.468289428840316 2.634145423791235

8 1.468122140755486 2.629489693948282

9 1.468008309717543 2.626054066036805

10 1.467956382495343 2.624432487387554

11 1.467915603443970 2.623117304368586

12 1.467883002922926 2.622033892173660

13 1.467856536243392 2.621129346334020

in Table 4.2. Extrapolating y∗(T ) as described above, we estimate

yc(vertex) = 1.77564.

We have also found, by an identical method of extrapolation, that A(xc, yc) = 2.678405, which is

1.024981/cos(3π/8). In Subsection 2.2.2 we found, for the non-interacting case (corresponding

to y = 1), A(xc, 1) = 2.678365 = 1.024966/cos(3π/8). Thus there appears to be a very weak

y dependence. (In the normalisation of the generating function AT (xc, y) used here, two extra

half-steps are included, giving an extra factor of the step fugacity xc, compared to the value

that would be quoted if contributing walks started and ended on the surface. This explains the

difference between the values quoted in Table 4.2 and the ordinates in Figure 4.11.)

Table 4.3 shows the corresponding data for the edge weighted case. Extrapolating y∗(T ) as

described above, we estimate

yc(edge) = 2.040135.

We also find that A(xc, yc) = 2.678405, which is 1.024981/cos(3π/8). In [12] we found, for the

non-interacting case (corresponding to y = 1), A(xc, 1) = 2.6783= 1.0249/cos(3π/8). This is too

imprecise to see any evidence of y dependence.

4.2.3 Triangular lattice

We next consider data for the triangular lattice, with every surface vertex carrying a fugacity

y. We generated data for AT (xc, y) for T ≤ 11 as described in Subsection B.1.2, and found the
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Table 4.2: Estimates of y∗(T ) and AT (xc, y∗(T )) for the square lattice surface vertex model.

T y∗(T ) AT (xc, y∗(T ))

1 1.781782909906119 2.748677355944862

2 1.778386591113354 2.715115253913871

3 1.777378005442640 2.704018907440273

4 1.776850407093364 2.697681121136133

5 1.776527700942633 2.693512738663579

6 1.776316359764735 2.690608915840792

7 1.776170974231462 2.688500944397294

8 1.776066934443028 2.686918847615982

9 1.775990033953699 2.685698355993929

10 1.775931645420429 2.684735010917280

11 1.775886299456907 2.683959815456866

12 1.775850398954429 2.683325675630414

13 1.775821502307431 2.682799521958416

14 1.775797906369155 2.682357553489197

Table 4.3: Estimates of y∗(T ) and AT (xc, y∗(T )) for the square lattice surface edge model.

T y∗(T ) AT (xc, y∗(T ))

1 2.023317607727152 2.519464246890523

2 2.031649211433080 2.585125356952430

3 2.035085448834840 2.616332757155513

4 2.036771224259312 2.633293109539552

5 2.037723730407517 2.643677266387231

6 2.038317002192238 2.650588857893349

7 2.038712823877066 2.655469267857106

8 2.038990695898482 2.659069610531442

9 2.039193569770578 2.661816780067225

10 2.039346383471084 2.663969985883853

11 2.039464457297598 2.665695001241074

12 2.039557641399558 2.667102372510593

13 2.039632511102958 2.668268404182947

14 2.039693596208206 2.669247312794744
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Table 4.4: Estimates of y∗(T ) and AT (xc, y∗(T )) for the triangular lattice surface vertex model.

T y∗(T ) AT (xc, y∗(T ))

1 2.169017975620833 5.299883162257977

2 2.152124186067447 5.089804987842667

3 2.147952081330057 5.033100087535114

4 2.146325209334416 5.009022287728647

5 2.145537862947824 4.996485228732837

6 2.145102964455591 4.989109337635192

7 2.144840361941141 4.984402909686655

8 2.144671215263562 4.981219362650799

9 2.144556764080381 4.978968525942606

10 2.144476246964690 4.977320728801566

intersection points where AT (xc, y) =AT+1(xc, y), which defines y∗(T ). These data are tabulated

in Table 4.4. Extrapolating y∗(T ) as described above, we estimate

yc(vertex) = 2.144181.

We have also found, by an identical method of extrapolation, that A(xc, yc) = 4.97002, which is

1.901944/cos(3π/8). In Subsection 2.2.3 we found, for the non-interacting case (corresponding

to y = 1), A(xc, 1) = 4.970111 = 1.901979/cos(3π/8). Thus there again appears to be a very

weak y dependence.

Table 4.5: Estimates of y∗(T ) and AT (xc, y∗(T )) for the triangular lattice surface edge model.

T y∗(T ) AT (xc, y∗(T ))

1 2.933665548671216 4.793416679321919

2 2.939352607034002 4.841229819027843

3 2.942788011875285 4.873934294210283

4 2.944814166604381 4.895179517868169

5 2.946090146548846 4.909648090189844

6 2.946944189466541 4.919989731979732

7 2.947544335340955 4.927679988442194

8 2.947982663246637 4.933582932189477

9 2.948312910101248 4.938231892866670

10 2.948568146735367 4.941971526310544
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Table 4.5 shows the corresponding data for the edge weighted case. Extrapolating y∗(T ) as

described above, we estimate

yc(edge) = 2.950026.

We also find that A(xc, yc) = 4.9696, which is 1.90178/cos(3π/8). In Subsection 2.2.3 we found,

for the non-interacting case (corresponding to y = 1), A(xc, 1) = 4.970111= 1.901979/cos(3π/8).

Again, there is evidence of weak y dependence.

4.3 Solvable models

In Chapter 3 we considered a number of subclasses of SAWs and SAPs. Our primary motivation

in doing so is that many such models are solvable – we can rigorously prove explicit expressions

for their generating functions or their series coefficients. This allows for a level of scrutiny

which may not be possible for general SAWs or SAPs; moreover, the solutions to such models

may help to shed light on the general models.

Such an approach has also been used extensively in the study of polymer models, and in

particular, models of polymer adsorption. For relatively simple models we are able to deter-

mine exact expressions for quantities of interest (in particular, generating functions and the free

energy), and these allow for detailed analyses of phase transitions and other phenomena.

In this section we return to the methodology of Chapter 3, and consider subclasses of SAWs

for which we can derive functional equations and, hopefully, exact solutions to generating func-

tions. Here, however, these SAW models will be interacting with an impenetrable surface, and

thus their generating functions will include a fugacity y associated with visits to the surface. We

first briefly review some existing solvable models of polymer adsorption, which all have a direct-

edness restriction. We then introduce some new models, based on the prudent walks discussed

in Chapter 3, which do not have a directedness restriction, and show that in some cases these

models are exactly solvable. We believe these are the only known solvable models of polymer ad-

sorption which are not directed; moreover, they display interesting phase transition properties

not seen in the simpler directed models.

Throughout this section the impenetrable surface will always be the x-axis, and the walks

will be confined to the upper half-plane of the lattice.

4.3.1 Directed walks

Recall from Chapter 3 that a SAW is directed if it is forbidden from stepping in at least one

direction on its lattice. More specifically, if S is a set of possible step directions on a lattice,

then a walk is S-directed if it only takes steps from S. Below we summarise some of the most

commonly-used directed models of polymer adsorption.
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(a) (b)

(c) (d)

Figure 4.13: Examples of directed polymer adsorption models, with vertex weights indicated:

(a) a fully directed walk, (b) a Dyck path, (c) a Motzkin path and (d) a partially directed walk.

Fully directed walks

This is essentially the simplest two-dimensional model of polymer adsorption, and we will use it

as an example to demonstrate the techniques employed later in this section. We consider walks

on the square lattice, and only allow north or east steps. (So our walks are NE-directed – see

Figure 4.13 for an example.) Clearly no surface interactions can occur after a walk has taken a

north step, so we can split walks into two independent pieces: the ‘interacting’ phase (when the

walk remains on the surface) and the ‘bulk’ phase (when the walk has left the surface).

If fn,ν is the number of NE-directed walks of length n with ν edges along the x-axis, then the

generating function

F (t ; y) =
∑

n,ν
fn,ν t

n yν

is given by

F (t ; y) =
1

1− t y
·

1− t

1− 2t
. (4.35)

(The first factor is the generating function for the interacting phase and the second is the gener-

ating function of the bulk phase.)

If we restrict y to be real and non-negative, then it is clear by inspection that the dominant

singularity tc(y) of F (t ; y) for a given y is

tc(y) =







1/2 y ≤ 2

1/y y > 2.

Recalling the relationship (4.2) between the dominant singularity and the free energy, we have
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that

κ(y) =− log tc(y) =







log2 y ≤ 2

log y y > 2.

So for fully directed walks the adsorption phase transition occurs at y = yc = 2. Moreover,

this transition is first-order, as the first derivative κ′(y) is discontinuous at y = 2. The crossover

exponent (defined at the beginning of this chapter) is φ= 1.

In the limit of infinitely long polymers, the mean density δ(y) of steps in the surface is given

by

δ(y) = y
dκ

d y
=







0 y < 2

1 y > 2.

Note that a fully directed walk with n edges in the x-axis will have precisely n + 1 vertices

in the surface, so the generating function for the vertex-weighted model is simply yF (t ; y). This

doesn’t change the singular behaviour of the generating function, so the free energy etc. remain

unchanged.

Dyck/ballot paths

These are fully directed walks on the (45◦ rotated) square lattice, formed by allowing only north-

east and south-east steps. A Dyck path must start and end on the surface, while a ballot path need

only start on the surface. See [110, 113] for further details, and Figure 4.13 for an example. Since

there are no steps parallel to the surface, only the vertex-weighted model can be considered.

If we define

S(t )≡ S =
1−
p

1− 4t 2

2t
= t + t 3+ 2t 5+ 5t 7+ 14t 9+O(t 10),

then the two-variable generating function of Dyck paths (with t conjugate to length and y con-

jugate to surface contacts) is

D(t ; y) =
y

1− t Sy
(4.36)

= y + t 2y2+ t 4(y2+ y3)+ t 6(2y2+ 2y3+ y4)+O(t 8),

while the generating function of ballot paths is

B(t ; y) =
y(1− t − t S)

(1− 2t )(1− t Sy)
(4.37)

= y + t y + t 2(y + y2)+ t 3(2y + y2)+ t 4(3y + 2y2+ y3)+O(t 5).
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The dominant singularity for both generating functions is

tc(y) =







1/2 y ≤ 2
p

y−1
y y > 2,

and thus the free energy is given by

κ(y) =− log tc(y) =







log2 y ≤ 2

log
�

yp
y−1

�

y > 2.

So as with fully directed walks, the adsorption phase transition occurs at y = yc = 2. This

time, however, it is a second-order transition, as the derivative κ′(y) is continuous at y = 2. The

crossover exponent here is φ= 1/2, since

log

 

y
p

y − 1

!

− log2∼
1

2
(log y − log2)2 as y→ 2+.

Finally, the mean density of monomers in the surface (in the limit of infinitely long walks)

is given by

δ(y) = y
dκ

d y
=







0 y ≤ 2
2−y

2(1−y) y > 2.

Note here that δ(y) → 1/2 as y → ∞; since Dyck paths must always have even length, it is

common to compute the generating function for half-length instead of length. In that case we

would observe δ(y)→ 1 in the limit.

Motzkin paths

These are generated on the triangular lattice by allowing north-east, east and south-east steps.

See [114] for further details, and Figure 4.13 for an example. Both edge- and vertex-weightings

are possible, and unlike fully directed walks, the relationship between the two is non-trivial.

For the edge-weighted model, the free energy is given by

κ(y) =







log3 y ≤ 2

log
�

1−y+y2

y−1

�

y > 2,

and so the phase transition occurs at y = yc = 2 and is second-order, and the crossover exponent

is φ= 1/2. The density of monomers in the surface is then

δ(y) =







0 y ≤ 2
y2(2−y)

(1−y)(1−y+y2)
y > 2.
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For the vertex-weighted model, the free energy is given by

κ(y) =







log3 y ≤ 3/2

log
�

2y

1−y+
p
(y−1)(y+3)

�

y > 3/2,

and so the phase transition occurs at y = yc = 3/2 and is second-order. The crossover exponent

is φ= 1/2. The density of monomers in the surface is then

δ(y) =







0 y ≤ 3/2
−6+y+y2+y

p
(y−1)(y+3)

2(y−1)(y+3) y > 3/2.

Partially directed walks

These are generated on the square lattice by allowing north, east and south steps. See [98, 46,

119] for further details, and Figure 4.13 for an example.

For the edge-weighted model, the free energy is given by

κ(y) =







log(1+
p

2) y ≤ (2+
p

2)/2

− log f (y) y > (2+
p

2)/2,

where f (y) is a root of

1− y − y(1− y) f (y)+ y f (y)2+ y(1− y) f (y)3 = 0.

(We are unable to find a neat explicit expression for f (y).) The phase transition is second-order

and occurs at y = yc = (2+
p

2)/2, and the crossover exponent is φ = 1/2. In the limit of

infinitely long polymers, the density of edges in the surface is given by

δ(y) =







0 y ≤ (2+
p

2)/2
−y f ′(y)

f (y) y > (2+
p

2)/2.

For the vertex-weighted model, the free energy is given by

κ(y) =







log(1+
p

2) y ≤ (1+
p

2)(
p

5− 1)/2

− log g (y) y > (1+
p

2)(
p

5− 1)/2,

where g (y) is a root of

1− y2− y(1− y)(2+ y)g (y)+ y2(2− y)g (y)2+ y2(1− y)g (y)3− y3(1− y)g (y)4 = 0.
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(Again, we are unable to find a neat explicit expression for g (y).) The phase transition is second-

order and occurs at y = yc = (1+
p

2)(
p

5− 1)/2, and the crossover exponent is φ= 1/2. In the

limit of infinitely long polymers, the density of vertices in the surface is given by

δ(y) =







0 y ≤ (1+
p

2)(
p

5− 1)/2
−y g ′(y)

g (y) y > (1+
p

2)(
p

5− 1)/2.

4.3.2 Square lattice prudent walks

In this subsection and the next, we introduce several new models of polymer adsorption, some

of which have the pleasing property of being able to step in all directions (i.e. four on the square

lattice and six on the triangular) on their respective lattices. This means that, in a sense, they in-

terpolate between the directed walks discussed in the previous subsection and the general model

of adsorbing SAWs. On both lattices we will find solvable non-directed models; it turns out,

however, that those on the triangular lattice are somewhat easier to analyse. We will restrict our

investigation to the edge-weighted models; most of the methodology should be the same for the

vertex-weighted models, and we hope to consider those cases in a future study.

Recall from Section 3.2 that a SAW is prudent if it never takes a step towards a previously-

visited vertex. On the square lattice, this forces a prudent walk to end on the boundary of

its bounding box – the smallest lattice rectangle enclosing the entire walk. We thus form a sub-

classification of prudent walks according to which sides of their box they end on: 1-sided prudent

walks always end on the east side of their box, 2-sided walks always end on the east or north sides,

and 3-sided walks always end on the east, north or west sides.

When no surface is present, we also define 4-sided or unrestricted prudent walks to be those

walks which can end anywhere on their box. The imposition of the impenetrable surface in

the x-axis, however, means that the south side of the box always lies in the surface, and thus

every prudent walk which starts at the surface will be at most 3-sided. See Figure 4.14 for an

illustration.

The simplest type of prudent walks, 1-sided, coincides exactly with partially directed walks,

and the critical behaviour of that model was discussed in the previous subsection.

2-sided prudent walks

Our method for solving the generating function of 2-sided prudent walks follows along the same

lines as that used by Bousquet-Mélou [17] to solve the model without a surface. She was able to

exploit the symmetry of walks in the line y = x; we are unable to do so here, so we instead have
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Figure 4.14: A 3-sided prudent walk above an impenetrable surface. In order to become “4-

sided”, the walk would have to step towards the east from the south-west corner of its box, but

such a step can never be prudent.

j

i

(a)

j

i

(b)

Figure 4.15: 2-sided prudent walks above an impenetrable surface, (a) ending on the right of the

box and (b) ending on the top, with the distances i and j indicated.

to use two generating functions. Define the generating functions

R(t ; u, v; y) =
∑

n,i , j ,ν

rn,i , j ,ν t
n u i v j yν

T (t ; u, v; y) =
∑

n,i , j ,ν

tn,i , j ,ν t
n u i v j yν

where rn,i , j ,ν (resp. tn,i , j ,ν ) is the number of n-step 2-sided prudent walks which start on a hor-

izontal impenetrable surface and end on the east (resp. north) side of their bounding box, with

distance i from the endpoint to the north (resp. east) of the box, distance j from the endpoint

to the surface, and ν steps along the surface. See Figure 4.15 for examples of the two types of

2-sided prudent walks, with the distances measured by the catalytic variables indicated.

Lemma 4.18. The generating functions R(t ; u, v; y) and T (t ; u, v; y) satisfy the functional relations

L(t ; u, v)T (t ; u, v; y) =
1

1− t uy
−

t 2v

u − t
T (t ; t , v; y)+ t R(t ; t v, v; y)− t (1− y)R(t ; t v, 0; y)

(4.38)
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and

M (t ; u, v)R(t ; u, v; y) = 1+ t vT (t ; t , v; y)−
t 2v

u − t v
R(t ; t v, v; y)−

t 2u

v − t u
R(t ; u, t u; y)

−
t u(1− y)

u − t v
R(t ; u, 0; y)+

t 2v(1− y)

u − t v
R(t ; t v, 0; y), (4.39)

where

L(t ; u, v) = 1−
t uv(1− t 2)

(u − t )(1− t u)

M (t ; u, v) = 1−
t uv(1− t 2)

(v − t u)(u − t v)
.

Proof. We will go through the derivation of (4.38); much of the same reasoning applies for (4.39).

We recursively construct walks counted by T by considering their last inflating step - the last

step which moved either the north or east boundaries of their box.

• Walks with no inflating steps must be empty or contain only west steps; the generating

function of such walks is
1

1− t uy
.

• Walks whose last inflating step was north can be split into three parts: the section which

came before the inflating step (which could be any walk counted by T ), the inflating step

itself, and the steps which came after the inflating step (which must be east or west). The

generating function of these walks is thus

∑

n,i , j ,ν

tn,i , j ,ν t
n yν · t v j+1

 

i
∑

l=0

t l u i−l +
∞
∑

m=1
t m u i+m

!

(The sum over l is for walks with east steps following the inflating step; the sum over m

is for those with west steps following the inflating step.)

= t v
∑

n,i , j ,ν

t n yνv j

 

u i+1− t i+1

u − t
+

t u i+1

1− t u

!

=
t v

u − t
(uT (t ; u, v; y)− tT (t ; t , v; y))+

t 2uv

1− t u
T (t ; u, v; y).

• Walks whose last inflating step was east can also be split into three parts: the part of

the walk which came before the inflating step (which could be any walk counted by R),

the inflating step itself, and the steps which came after the inflating step (which must be

north). The generating function of these walks is thus
∑

n,i , j ,ν

rn,i , j ,ν t
n yν · t i+1v i+ j

= t R(t ; t v, v; y).
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However, the situation is slightly different if that inflating step was along the surface –

in that case, the walk should have acquired an extra weight of y. We can correct this by

subtracting those walks from the above sum and adding them back with the extra weight:

−t R(t ; t v, 0; y)+ t yR(t ; t v, 0; y).

All the above contributions must add exactly to T (t ; u, v; y); rearranging the resulting equation

gives (4.38). �

Lemma 4.19. The generating functions T (t ; u, v; y) and R(t ; u, v; y) satisfy the functional equation

M (t ; u, v)R(t ; u, v; y) =A(t ; u, v; y)+B(t ; u, v; y)R(t ; u, 0; y)+C (t ; u, v)T (t ; t , v; y) (4.40)

where

Λ(t ; v) =
1+ t 2− t v + t 3v −

Æ

(1+ t 2− t v + t 3v)2− 4t 2

2t

A(t ; u, v; y) =
v(u − t 2u − t uΛ(t ; v)y + t 2vΛ(t ; v)y)

(u − t v)(v − t u)(1− tΛ(t ; v)y)

B(t ; u, v; y) =−
t u(u + v − t v − t 2v − vy + t 2vy)

(u − t v)(v − t u)

C (t ; u, v) =−
t v(t u − uΛ(t ; v)+ t vΛ(t ; v))

(Λ(t ; v)− t )(u − t v)

Proof. Setting v = 0 in (4.39) yields

(1+ t − t x)R(t ; u, 0; y) = 1+ t R(t ; u, t u; y),

which can be used to eliminate R(t ; u, t u; y) from (4.39). Meanwhile, Λ(t ; v) satisfies the equa-

tion L(t ;Λ(t ; v), v) = 0 (as does another function of v, but Λ is the only root which is a power

series in t and thus the only one which will eventually give a well-defined solution), so substi-

tuting u =Λ(t ; v) into (4.38) cancels the LHS. The resulting equation can be written as

−
t 2v

u − t v
R(t ; t v, v; y)+

t 2v(1− y)

u − t v
R(t ; t v, 0; y)

=
t v

(u − t v)(1− tΛ(t ; v)y)
−

t 3v2

(u − t v)(Λ(t ; v)− t )
T (t ; t , v; y), (4.41)

which can then be used to eliminate R(t ; t v, v; y) and R(t ; t v, 0; y) from (4.39). Simple manipu-

lation gives (4.40) in the stated form. �

Proposition 4.20. The form of R(t ; u, 0; y) is given by

R(t ; u, 0; y) =
∞
∑

n=0
H (t ; uΛ̄(t )2n ; y)

n−1
∏

k=0

I (t ; uΛ̄(t )2k ; y) (4.42)
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when considered as a formal power series in t , u, y, where

Λ̄ = Λ(t ; 1) =
1− t + t 2+ t 3−

p

1− 2t − t 2− t 4+ 2t 5+ t 6

2t

H (t ; z; y) =
t (1− Λ̄2)(Λ̄− t 2Λ̄+ t y(t − 2Λ̄+ t Λ̄2)Λ(t ; zΛ̄)+ y(Λ̄− t )(1− t Λ̄)Λ(t ; zΛ̄)2)

(1− t Λ̄)(1− tΛ(t ; zΛ̄)y)(1+Λ̄− t Λ̄− t 2Λ̄− Λ̄y + t 2Λ̄y)(t Λ̄− (Λ̄− t )Λ(t ; zΛ̄))

I (t ; z; y) =
Λ̄(Λ̄− t )(1− t − t 2− y + t 2y +Λ̄)(t − (1− t Λ̄)Λ(t ; zΛ̄))

(1− t Λ̄)(1+Λ̄− t Λ̄− t 2Λ̄− Λ̄y + t 2Λ̄y)(t Λ̄− (Λ̄− t )Λ(t ; zΛ̄))

Proof. Equation (4.19) is susceptible to the iterative kernel method [116]. The kernel M is

cancelled at (u, v) = (u, uΛ̄) (and since M (t ; u, v) = M (t ; v, u), it also disappears at (u, v) =

(vΛ̄, v)), and so by substituting the pairs

(u, v) = (u, uΛ̄) and (u, v) = (uΛ̄2, uΛ̄),

we obtain two equations in R(t ; u, 0; y), R(t ; uΛ̄2, 0; y) and T (t ; t , uΛ̄; y). One can then elimi-

nate T (t ; t , uΛ̄; y) to obtain

R(t ; u, 0; y) =H (t ; u; y)+I (t ; u; y)R(t ; uΛ̄2, 0; y) (4.43)

where

H (t ; u; y) =−
A(t ; u, uΛ̄; y)

B(t ; u, uΛ̄; y)
+

C (t ; u, uΛ̄)A(t ; uΛ̄2, uΛ̄; y)

B(t ; u, uΛ̄; y)C (t ; uΛ̄2, uΛ̄)

I (t ; u; y) =
C (t ; u, uΛ̄)B(t ; uΛ̄2, uΛ̄; y)

B(t ; u, uΛ̄; y)C (t ; uΛ̄2, uΛ̄)

After simplificationH and I take the form given in the proposition.

Iterating (4.43) gives (4.42), as long as everything converges as a formal power series. But

nowH (t ; u; y) is a power series in t with coefficients in Z[u, y] of the form 1+ t y+O(t 2), and

likewiseI (t ; u; y) is a power series of the form t 4(1−y−u+uy)+O(t 5). So the sum converges

as a formal power series in t with coefficients in Z[u, y]. �

Theorem 4.21. The generating functions R(t ; u, v; y) and T (t ; u, v; y) have the solutions

R(t ; u, v; y) =
1

M (t ; u, v)

�

A(t ; u, v; y)+B(t ; u, v; y)R(t ; u, 0; y)+C (t ; u, v)T (t ; t , v; y)
�

T (t ; u, v; y) =
1− t u

L(t ; u, v)

�

(t − u)
�

1

1− t uy
−

1

1− tΛ(t ; v)y

�

+t 2v
�

1+
t − u

Λ(t ; v)− t

�

T (t ; t , v; y)
�

where

T (t ; t , v; y) =
−1

C (t ; vΛ̄, v)
(A(t ; vΛ̄, v; y)+B(t ; vΛ̄, v; y)R(t ; vΛ̄, 0; y))

178



and R(t ; u, 0; y), R(t ; vΛ̄, 0; y) are given by (4.42). The overall generating function for 2-sided pru-

dent walks above an impenetrable surface is then

W�(t ; u, v; y) =
∑

n,i , j ,ν

w�n,i , j ,ν t
n u i v j yν

= R(t ; u, v; y)+T (t ; u, v; y)−R(t ; u, 0; y)

where w�n,i , j ,ν is the number of n-step 2-sided prudent walks which end a distance i from the north-

east corner of their box and a distance j above the surface, with ν steps along the surface.

Proof. Substituting (u, v) = (vΛ̄, v) into (4.40) cancels the LHS, and rearranging gives the stated

form of T (t ; t , v; y). Since vΛ̄ is a power series in t with coefficients in Z[v], R(t ; vΛ̄, 0; y) is

well-defined as a formal power series. Rearranging (4.40) then gives R(t ; u, v; y).

Equation (4.41) can be rewritten as

t R(t ; t v, v; y)− t (1− y)R(t ; t v, 0; y) =
−1

1− tΛ(t ; v)y
+

t 2v

Λ(t ; v)− t
T (t ; t , v; y),

and this can be used to eliminate R(t ; t v, v; y) and R(t ; t v, 0; y) from (4.38). Rearranging the

resulting equation gives the stated expression for T (t ; u, v; y).

The overall generating function W�(t ; u, v; y) is then found by adding the generating func-

tions for walks ending on the right and the top of the box, and we subtract R(t ; u, 0; y) because

walks ending at the north-east corner have been counted twice. �

While we are quite certain of the location of the dominant singularity of W�(t ; 1, 1; y) for

all y ≥ 0, we have been unable to complete a rigorous proof. We will thus present the result as

just a conjecture. (Fortunately we will be able to go further for the triangular lattice.)

Conjecture 4.22. For a given y ≥ 0, the dominant singularity of W�(t ; 1, 1; y) is located at

tc(y) =







α≈ 0.403032 y ≤ 2

h(y) y > 2,

where α is a root of 1− 2α− 2α2+ 2α3 = 0, and h(y) is a root of

1− y − y(1− y)h(y)+ y h(y)2+ y(1− y)h(y)3 = 0.

The free energy of 2-sided prudent walks adsorbing onto an impenetrable surface is thus given by

κ(y) = − log tc(y), and the adsorption phase transition occurs at y = yc = 2 and is first-order. The

crossover exponent is φ= 1. In the limit of infinitely long polymers, the mean density of monomers

(i.e. edges) in the surface is

δ(y) =







0 y < 2
−y h ′(y)

h(y) y > 2.
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(See Figure 4.16 for plots of the dominant singularity and surface density.) The constant

part of the dominant singularity (i.e. the radius of convergence in the desorbed phase) appears

to be a pole in the T (t ; t , 1; y) term, which appears in both R(t ; 1, 1; y) and T (t ; 1, 1; y). More

specifically, α is a root of C (t ; Λ̄, 1) = 0. The dominant singularity in the adsorbed phase appears

as a pole of R(t ; 1, 0; y) and R(t ; Λ̄, 0; y). In fact, h(y) is a root (in the variable t ) of

1+Λ̄− t Λ̄− t 2Λ̄− Λ̄y + t 2Λ̄y = 0,

which in turn makes it a root of B(t ; 1, Λ̄; y) = 0 (and in fact a root of B(t ; Λ̄n , Λ̄n+1; y) = 0 for

n ≥ 0), and thus a pole ofH (t ; Λ̄n ; y) and I (t ; Λ̄n ; y) for all n ≥ 0.

Series analysis of W�(t ; 1, 1; y) for a variety of y values confirms the validity of this conjec-

ture. We point out that the dominant singularity in the desorbed phase, α ≈ 0.403032, is the

same as for 2-sided prudent walks without a boundary (see Corollary 3.7).

The fact that this model undergoes a first-order adsorption transition is perplexing. On the

square lattice, we have the scheme

partially directed walks ⊂ 2-sided prudent walks ⊂ general SAWs.

But now as we saw in the previous subsection, partially directed walks undergo a second-order

transition, and general SAWs are expected [117, 104] to do the same. It seems natural, then, to

expect that a model like 2-sided prudent walks, which ‘interpolates’ between PDWs and SAWs,

would exhibit the same behaviour.

At first, our intuition was that the phase transition for prudent walks might be first-order

because the ‘average’ 2-sided prudent walk, in the desorbed phase, moves away from the surface

at a speed which is linearly proportional to its length. That is, if we denote by 〈Sn〉 the mean

distance between the endpoint of a 2-sided prudent walk of length n and the surface, then we

expect 〈Sn〉 ∼ cn for some positive constant c . This conclusion arises via [44, Theorem IX.9],

the conditions of which we believe to be satisfied by W�(t ; 1, v; 1).

That theorem essentially states that if a bivariate generating function like F (z, u) satisfies a

certain set of conditions (a meromorphic schema), then the sequence of random variables Xn with

probability generating functions

pn(u) =
[zn]F (z, u)

[zn]F (z, 1)

converges to a Gaussian random variable, and the mean and standard deviation of Xn are asymp-

totically linear in n. If we use F (z, u) =W�(z; 1, u; 1) (here the variable u is conjugate to the

distance between the endpoint of a walk and the surface) and find that the meromorphic schema

is satisfied, then this would precisely imply that 〈Sn〉 ∼ cn. This would demonstrate a similarity

between 2-sided prudent walks and the fully directed walks discussed in the previous subsection

– for that model, it is clear that 〈Sn〉 ∼ n/2. Recall that fully directed walks were the only model

considered which displayed a first-order phase transition.
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Figure 4.16: Top: The (conjectured) free energy of 2-sided prudent walks (solid) and loops

(dashed) as function of the surface fugacity y. Bottom: The (conjectured) density of edges in

the surface for 2-sided prudent walks (solid) and loops (dashed). Note the discontinuity in the

surface density for both models, corresponding to a first-order adsorption transition.
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On the other hand, it is straightforward to show that for partially directed walks, 〈Sn〉 ∼
cn1/2. Moreover, for SAWs we would expect that 〈Sn〉 ∼ cnν , where 2ν is the exponent which

characterises the mean squared end-to-end distance (among other measurements) of two-dimensional

SAWs. Recall from Chapter 1 that ν is expected to be 3/4 in two dimensions.10

So while 2-sided prudent walks do indeed interpolate between the smaller class of partially

directed walks and the larger class of general SAWs, we expect them to move away from the

surface faster than either of the other two models. In this respect, 2-sided prudent walks more

closely resemble fully directed walks, a model which we know undergoes a first-order adsorption

transition.

However, on closer inspection this reasoning seems to break down. If it was indeed the

case that 2-sided prudent walks undergo a first-order transition because they drift away from the

surface faster than PDWs or general SAWs, then it would be worthwhile to investigate a subset

of prudent walks which remain close to the surface. In particular, (4.42) gives us the form of

R(t ; u, 0; y), and then

W�(t ; 1, 0; y) = R(t ; 1, 0; y)+
t y

1− t y
.

(The second term accounts for walks comprising a sequence of west steps, but will not affect the

dominant singular behaviour of the model.) We refer to walks which both start and end on the

surface as loops. In this case, we can perform a similar study to that of W�(t ; 1, 1; y), and we find

the following result. (Again, we are unable to complete a rigorous proof.)

Conjecture 4.23. For a given y ≥ 0, the dominant singularity of W�(t ; 1, 0; y) is located at

tc(y) =







τ ≈ 0.412095 y ≤ σ ≈ 1.82476

h(y) y >σ ,

where τ is a root of

1− 3τ−τ2+ 6τ3− 7τ7−τ8+ 3τ9+τ10 = 0,

σ is a root of

1− 7σ + 45σ2− 143σ3+ 277σ4− 346σ5+ 285σ6− 155σ7+ 54σ8− 11σ9+σ10 = 0,

and h(y) is as defined in Conjecture 4.22. The free energy of 2-sided prudent loops is thus given by

κ(y) = − log tc(y), and the adsorption transition occurs at y = yc = σ and is first-order, and the

crossover exponent is φ= 1. In the limit of infinitely long polymers, the mean density of monomers

10To be precise, the constant c for partially directed walks is

3+ 2
p

2

2

q

π(5
p

2− 7) = 1.377 . . . .
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Figure 4.17: 3-sided prudent walks above an impenetrable surface, (a) ending on the right of the

box and (b) ending on the top, with the distances i , j and k indicated.

in the surface is

δ(y) =







0 y <σ
−y h ′(y)

h(y) y >σ .

(See Figure 4.16 for plots of the dominant singularity and surface density.) The dominant

singularity in the adsorbed phase is the same as for W�(t ; 1, 1; y), and arises from the same terms.

The dominant singularity in the desorbed phase appears to be a root of C (t ; Λ̄2, Λ̄) = 0, which

would make it a pole ofH (t ; 1; y) and I (t ; 1; y).

So we see that even forcing 2-sided prudent walks to end on the surface does not induce a

second-order phase transition.

As we will see in Subsection 4.3.3, the picture is complicated even further when we start

looking at prudent walks on the triangular lattice. For that model, it does make a difference

whether the endpoint of a walk is forced to lie on the surface or not.

3-sided prudent walks

We present here the functional equations for 3-sided prudent walks on the square lattice, though

we are unable to solve them. Define the generating functions

R∗(t ; u, v, w; y) =
∑

n,i , j ,k ,ν

r ∗n,i , j ,k ,ν t
n u i v j wk yν

T ∗(t ; u, v, w; y) =
∑

n,i , j ,k ,ν

t ∗n,i , j ,k ,ν t
n u i v j wk yν

where r ∗n,i , j ,k ,ν
counts n-step walks ending on the right of their box and t ∗n,i , j ,k ,ν

counts those

ending at the top of their box. In both cases i is the distance from the endpoint to the north-east

corner of the box, j is the distance from the endpoint to the surface, k is the distance from the

endpoint to the west side of the box, and ν is the number of occupied edges along the surface.

See Figure 4.17 for an illustration of these two types of walks, and the distances measured by the

catalytic variables.
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Lemma 4.24. The generating functions R∗(t ; u, v, w; y) and T ∗(t ; u, v, w; y) satisfy the equations

L∗(t ; u, v, w)T ∗(t ; u, v, w; y) = 1+ t wR∗(t ; t v, v, w; y)

+ t w(y − 1)R∗(t ; t v, 0, w; y)+ t uR∗(t ; t v, v, u; y)+ t u(y − 1)R∗(t ; t v, 0, u; y)

−
t 2vw

u − t w
T ∗(t ; t w, v, w; y)−

t 2uv

w − t u
T ∗(t ; u, v, t u; y) (4.44)

L∗(t ; u, w, v)R∗(t ; u, v, w; y) = 1−
t 2vw

u − t v
R∗(t ; t v, v, w; y)−

t 2uw

v − t u
R∗(t ; u, t u, w; y)

+
t uw(y − 1)

u − t v
R∗(t ; u, 0, w; y)−

t 2vw(y − 1)

u − t v
R∗(t ; t v, 0, w; y)+ t vT ∗(t ; t w, v, w; y) (4.45)

where

L∗(t ; u, v, w) = 1−
t uvw(1− t 2)

(u − t w)(w − t u)
.

We omit the proof, as the details follow in much the same way as in Lemma 4.18. Here,

inflating steps can be north, west or east; inflating steps to the north are attached to walks

counted by T ∗, and inflating steps to the west and east are attached to walks counted by R∗

(symmetry means R∗ also counts walks ending on the west side of the bounding box).

Though the equations are somewhat more complicated, the problem we face here is similar

to the difficulty of solving general prudent walks without a boundary [17] – the presence of

three catalytic variables seems to render the kernel method useless.

4.3.3 Triangular lattice prudent walks

We now turn our attention to prudent walks on the triangular lattice. (Recall the definitions

from Section 3.4.) As in the previous subsections, we place the impenetrable surface in the x-

axis, and consider walks which start on the surface. Walks will accumulate a weight y with

each edge along the surface. We will restrict our investigation to just two solvable subclasses of

prudent walks: 1-sided prudent walks, which are comprised of only north-west, north-east, east

and south-east steps, and equilateral prudent walks, which must always end on the boundary of

their bounding triangle. (Recall that the model of equilateral walks, without a boundary, was

the one solved by Bousquet-Mélou [17].) While the latter model is much harder to solve, it turns

out that these two models have essentially the same singular behaviour.

1-sided prudent walks

This model is very similar to that of partially directed walks on the square lattice, and might

be considered the analogue of that model on the triangular lattice. We define the generating

function

P (t ; v; y) =
∑

n,i ,ν

pn,i ,ν t
n v i yν ,
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i

Figure 4.18: A 1-sided triangular prudent walk with the distance i indicated.

where pn,i ,ν is the number of n-step 1-sided prudent walks which end a distance i above the

surface and contain ν steps along the surface. (See Figure 4.18.)

Lemma 4.25. The generating function P (t ; v; y) satisfies the functional equation
 

1−
t v(1− t 2)(1+ v)

(v − t )(1− t v)

!

P (t ; v; y) =
1

1− t v
−

t 2(1+ t )

v − t
P (t ; t ; y)−

t (1− y)

1− t v
P (t ; 0; y). (4.46)

Proof. As usual, we count walks by conditioning on the last inflating step, which for this model

could be north-east or east.

• A walk with no inflating steps must be empty or contain only north-west steps. The

generating function of such walks is

1

1− t v
.

• Walks whose last inflating step was north-east can be broken into three parts: the section

which came before the inflating step (which could be any walk), the inflating step itself,

and then a sequence of north-west or south-east steps. Note that the inflating step increases

the distance from the endpoint to the surface by one. The generating function for these

walks is

∑

n,i ,ν

pn,i ,ν t
n yν · t

 

∞
∑

l=0

t l v i+l+1+
i+1
∑

m=1
t m v i−m+1

!

(The sum over l is for walks with north-west steps following the inflating step, and the

sum over m is for walks with south-east steps following the inflating step.)

= t
∑

n,i ,ν

pn,i ,ν t
n yν
 

v i+1

1− t v
+

t (v i+1− t i+1)

v − t

!

=
t v

1− t v
P (t ; v; y)+

t 2

v − t
(vP (t ; v; y)− t P (t ; t ; y)).
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• Walks whose last inflating step was east can be broken into three parts in the same way

as the above case, with two differences: here the height above the surface does not change

with the inflating step, and if the inflating step was along the surface then we need to

account for the walk picking up an extra weight of y. We at first ignore the second point,

and obtain the generating function

∑

n,i ,ν

pn,i ,ν t
n yν · t

 

∞
∑

l=0

t l v i+l +
i
∑

m=1
t m v i−m

!

= t
∑

n,i ,ν

pn,i ,ν t
n yν
 

v i

1− t v
+

t (v i − t i )

v − t

!

=
t

1− t v
P (t ; v; y)+

t 2

v − t
(P (t ; v; y)− P (t ; t ; y)).

We then subtract off the contribution of those walks whose inflating step was along the

surface, and add them back in with an extra factor of y:

−
t

1− t v
P (t ; 0; y)+

t y

1− t v
P (t ; 0; y).

The contributions of all the above must add to give precisely P (t ; v; y); rearranging the resulting

equation gives (4.46). �

A simple application of the kernel method suffices to derive the solution to P .

Theorem 4.26. The generating functions P (t ; 1; y) and P (t ; 0; y), of 1-sided prudent walks and

prudent loops respectively, are given by

P (t ; 1; y) =
(1+ t )(1− F )

(1− 3t − 2t 2)(1+ F − t F − t 2F − F y + t 2F y)
(4.47)

P (t ; 0; y) =
F (1− t 2)

t (1+ F − t F − t 2F − F y + t 2F y)
, (4.48)

where

F ≡ F (t ) =
1− t + t 2+ t 3− (1+ t )

p

1− 4t + 2t 2+ t 4

2t (2− t 2)
.

Proof. Setting v = 0 in (4.46) gives

(1+ t − t y)P (t ; 0; y) = 1+ t (1+ t )P (t ; t ; y), (4.49)

while setting v = F cancels the kernel of (4.46) and gives

P (t ; t ; y) =
F − t

t 2(1+ t )(1− t F )
(1− t (1− y)P (t ; 0; y)). (4.50)

Solving (4.49) and (4.50) simultaneously yields P (t ; 0; y) as stated in the theorem, and

P (t ; t ; y) =
F − t

t 2(1+ t )(1+ F − t F − t 2F − F y + t 2F y)
.

Substitution into (4.46) finally gives P (t ; 1; y). �
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It is straightforward to determine the dominant singular behaviour of P (t ; 1; y) and P (t ; 0; y)

for all y, and from there to obtain the free energy and surface density. The y-dependent factor is

the same for the two generating functions.

Corollary 4.27. The dominant singularity for 1-sided prudent walks, for y ≥ 0, is located at

tc =







ρ=
p

17−3
4 ≈ 0.281 y ≤ χ = 7+

p
17

4 ≈ 2.78
y2−
p

y(−4+8y−4y2+y3)
2y(y−1) y >χ .

The singularity is a simple pole for all y ≥ 0 except at y = χ , where it is a double pole. The free

energy for 1-sided prudent walks is thus κ(y) = − log tc(y), and the adsorption transition occurs at

y = χ and is first-order. The crossover exponent is φ = 1. In the limit of infinitely long polymers,

the density of steps in the surface is

δ(y) =







0 y <χ
4−12y+12y2−5y3+y4+y(y−3)

q

y(−4+8y−4y2+y3)
2(y−1)(−4+8y−4y2+y3) y >χ .

The dominant singularity for 1-sided prudent loops, for y ≥ 0, is located at

tc(y) =







β≈ 0.296 y ≤ γ ≈ 2.191
y2−
p

y(−4+8y−4y2+y3)
2y(y−1) y > γ ,

whereβ is a root of 1−3β−β2−β3 = 0 and γ is a root of 1−4γ+6γ 2−2γ 3 = 0. The singularity

is a square root singularity for y < γ , a pole of order 1/2 at y = γ , and a simple pole for y > γ . The

free energy for 1-sided prudent loops is thus κ(y) =− log tc(y), and the adsorption transition occurs

at y = γ and is second-order. The crossover exponent is φ = 1/2. In the limit of infinitely long

polymers, the density of monomers in the surface is

δ(y) =







0 y ≤ γ
4−12y+12y2−5y3+y4+y(y−3)

q

y(−4+8y−4y2+y3)
2(y−1)(−4+8y−4y2+y3) y > γ .

So we see that for this model, unlike the case of 2-sided prudent walks on the square lattice,

the phase transition is second-order when we force walks to end on the surface. Even though

the results on the square lattice seemed to suggest that our intuition regarding the speed with

which walks move away from the surface was incorrect, we will take this opportunity to further

complete the picture on the triangular lattice.

We also point out that the dominant singularity in the desorbed phase, (
p

17− 3)/4, is pre-

cisely the same as for 1-sided prudent walks on the triangular lattice without a boundary (see

Lemma 3.53).
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Lemma 4.28. For 1-sided prudent walks on the triangular lattice in the desorbed phase, the mean

distance 〈Sn〉 from the endpoint of a walk of length n to the surface satisfies

〈Sn〉 ∼
 

17+
p

17

68

!

n.

Proof. The probability generating function for the end-to-surface distance of walks of length n

is

pn(v) =
[t n]P (t ; v; 1)

[t n]P (t ; 1; 1)
,

thus the mean is given by

〈Sn〉=
[t n] ∂

∂ v P (t ; v; 1)

[t n]P (t ; v; 1)

�

�

�

�

�

�

v=1

.

Calculating P (t ; v; 1), and hence ∂
∂ v P (t ; v; 1), from (4.46) is straightforward, as is extracting the

exact asymptotic form of the coefficient of t n in each. After simplification the ratio is given by

the result of the lemma. �

Equilateral prudent walks

The model of 1-sided prudent walks considered above is pleasing, as we saw that the nature of

the adsorption transition can be changed simply by forcing walks to end on the surface. It is,

however, still a directed model – there are two directions on the lattice in which 1-sided walks

cannot step. We thus now turn our attention to a solvable model which is not characterised by

a directedness restriction.

As mentioned in Section 3.4, the model of equilateral prudent walks was introduced by

Bousquet-Mélou [17]. (The ‘equilateral’ name is ours.) These are prudent walks on the trian-

gular lattice with the extra condition that the endpoint of a walk must lie on the boundary of

the smallest (north-pointing) lattice triangle which contains the entire walk. Bousquet-Mélou

solved the generating function of these walks without a surface, and found it to be non-D-finite.

The iterative construction used here is modelled on the one used by her, though it is somewhat

complicated by the presence of the surface.

We define the generating function

E(t ; u, v; y) =
∑

n,i , j ,ν

en,i , j ,ν t
n u i v j yν

where en,i , j ,ν is the number of n-step equilateral prudent walks starting on a horizontal impen-

etrable surface and ending on the east side of the bounding triangle, with a distance i from the

endpoint to the top of the triangle, a distance j from the endpoint to the surface, and ν steps

along the surface. (See Figure 4.19 for an illustration of an equilateral prudent walk, together

with the distances measured by the catalytic variables.)
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i

j

Figure 4.19: An equilateral prudent walk above an impenetrable surface, with the distances i

and j indicated.

Lemma 4.29. The generating function E(t ; u, v; y) satisfies the functional relation

K(t ; u, v)E(t ; u, v; y) = 1−
t 2u2(1+ t )

v − t u
E(t ; u, t u; y)+

t v(1+ t )(u − 2t v)

u − t v
E(t ; t v, v; y)

−
t u2(1− y)

u − t v
E(t ; u, 0; y)−

t 2v(u − 2t v)(1− y)

u − t v
E(t ; t v, 0; y) (4.51)

where

K(t ; u, v) = 1−
t uv(1− t 2)(u + v)

(u − t v)(v − t u)
.

Proof. Walks are constructed by considering the location and direction of their last inflating

step, which moved either the left or right boundaries of the bounding triangle.

• The only walk with no inflating steps is the empty walk, which has generating function 1.

• A walk whose last inflating step was east can be split into three parts: the section which

came before the inflating step (any walk ending on the east side of its triangle), the inflating

step itself, and then a sequence of north-west or south-east steps. The generating function

of these walks is thus

∑

en,i , j ,ν t
n yν · t







j
∑

l=1

t l u i+l+1v j−l +
i+1
∑

m=0
t m u i−m+1v j+m







(The sum over l is for walks with south-east steps following the inflating step, and the sum

over m is for walks with north-west steps following the inflating step. See Figure 4.20 for

an illustration.)

= t
∑

en,i , j ,ν t
n yν
 

t u i+2(v j − (t u) j )

v − t u
+

v j (u i+2− (t v)i+2)

u − t v

!

=
t 2u2

v − t u
(E(t ; u, v; y)− E(t ; u, t u; y))+

t

u − t v
(u2E(t ; u, v; y)− t 2v2E(t ; t v, v; y)).

However, if the east step was along the surface, the walk should have picked up an extra

factor of y. We correct this by subtracting those terms and then adding them back with
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i + 1

j

Figure 4.20: After an east inflating step, the walk can take up to i + 1 steps north-west or up to

j steps south-east without inflating again.

the extra factor:

−
t (1− y)

u − t v
(u2E(t ; u, 0; y)− t 2v2E(t ; t v, 0; y)).

• If the last inflating step was north-east we have essentially the same considerations as the

previous case, without the issue of a step along the surface. The generating function of

these walks is

t 2u

v − t u
(vE(t ; u, v; y)− t uE(t ; u, t u; y))+

t v

u − t v
(uE(t ; u, v; y)− t vE(t ; t v, v; y)).

• A walk whose last inflating step was north-west must have followed the inflating step with

enough north-east steps to reach the top corner of the triangle. Since E also counts walks

ending on the left of their triangle (by reflective symmetry), the generating function of

these walks is

t vE(t ; t v, v; y).

• Walks with last inflating step west are similar to the north-west case, except we must

consider separately the case when the inflating step was along the surface:

t 2vE(t ; t v, v; y)− t 2v(1− y)E(t ; t v, 0; y).

Since the five contributions above are mutually disjoint and cover all possible inflating steps,

adding them together gives E(t ; u, v; y), and (4.51) follows. �

Despite the complexity of (4.51), some careful manipulation eventually leads to a solution.

Corollary 4.30. The generating function E(t ; u, 0; y) of walks which end on the surface satisfies the

functional relation

E(t ; u, 0; y) = 1+ t u(1+ t )E(t ; u, t u; y)− t u(1− y)E(t ; u, 0; y) (4.52)

Proof. This result follows immediately from setting v = 0 in (4.51). Equivalently, the construc-

tion used in the proof of Lemma 4.29 can be modified so as to only generate walks ending on

the surface. �
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Equation (4.52) can be used to eliminate one of E(t ; u, 0; y) and E(t ; u, t u; y) from (4.51),

giving

K(t ; u, v)E(t ; u, v; y) =X (t ; u, v; y)+Y (t ; u, v; y)E(t ; u, t u; y)+Z(t ; u, v)Q(t ; v; y), (4.53)

where

Q(t ; v; y) = (1+ t )E(t ; t v, v; y)− t (1− y)E(t ; t v, 0; y),

X (t ; u, v; y) = 1−
t u2(1− y)

(u − t v)(1+ t u − t uy)
,

Y (t ; u, v; y) =−
 

t 2u2(1+ t )

v − t u
+

t 2u3(1+ t )(1− y)

(u − t v)(1+ t u − t uy)

!

,

Z(t ; u, v) =
t v(u − 2t v)

u − t v
.

Proposition 4.31. The form of Q(t ; v; y) is given by

Q(t ; v; y) =
∞
∑

n=0
F (t ; t 2n S(t ; v); y)

n−1
∏

k=0

G (t ; t 2k S(t ; v); y) (4.54)

when considered as a formal power series in t , v, y, where

F (t ; z; y) =
(1+ t y)(1+ t z)(1+ t 2z)(1+ t 3z)(1− t 5z2)

(1+ t 4z)(1− t z(1− 2t 2))(1+ t 2z(1− y(1− t )))

G (t ; z; y) =−
t 6z2(1+ t z)(1− y(1− t )+ t 3z)(1− 2t 2− t 4z)

(1+ t 4z)2(1− t z(1− 2t 2))(1+ t 2z(1− y(1− t )))

S(t ; v) =
1− t − t v − t 2v −

Æ

(1− t − t v − t 2v)2− 4t 3v2

2t 3v
.

Proof. Equation (4.53) is susceptible to the iterative kernel method [116]. The root D(t ; v)

which gives K(t ; D(t ; v), v) = 0 (since K is quadratic in u and v, there are two such roots, but

D is the only one which is a power series in t ) is

D(t ; v) = v ·
1− t v + t 2+ t 3v − (1+ t )

Æ

(1− t )(1− t − 2t v − 2t 2v + t 2v2− t 3v2)

2t (1+ v − t 2v)
.

Since K(t ; u, v) =K(t ; v, u), we also have K(t ; u, D(u)) = 0.

A naive application of the iterative kernel method to (4.53) would lead to an infinite sequence

of equations, obtained by substituting

(u, v) 7→ (D(v), v), (D(v), D(D(v))), (D(D(D(v))), D(D(v))), . . .

Without considerable simplification, any solution obtained in this way would be unwieldy and

would make the extraction of series coefficients, singularities, etc. very difficult.11

11This is the method we had to use to solve the model of 2-sided perimeter walks (see Lemma 3.31). Recall that for

that model we were unable to obtain a proof of the dominant singularity, or even determine its precise value.
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Instead, note that the kernel K is the same as that which features in [17] as part of the

functional equation for equilateral prudent walks. For that problem, Bousquet-Mélou finds a

rational parametrisation for the curve K(t ; u, v) = 0, namely

K(t ; U (t ; z), U (t ; t z)) = 0 for U (t ; z) =
z(1− t )

(1+ t z)(1+ t 2z)

for any z 6=−t−1,−t−2.

In the non-boundary problem, the two terms on the RHS of the functional equation are

F (u) and F (v) for a certain generating function F , and this symmetry allows Bousquet-Mélou

to obtain a solution by substituting (u, v) = (U (t ; z), U (t ; t z)) and then iterating z 7→ t z. This

method will not work here because E(t ; u, t u; y) 6=Q(t ; u; y).

Instead, we can exploit the symmetry of K(t ; u, v) and substitute the pairs

(u, v) = (U (t z), U (z)) and (u, v) = (U (t z), U (t 2z)),

both of which cancel K . Doing so and eliminating the common term E(t ; U (t z), t U (t z); y)

gives the equation

Q(t ; U (z); y) =F (t ; z; y)+G (t ; z; y)Q(t ; U (t 2z); y), (4.55)

where

F (t ; z; y) =−
X (t ; U (t z), U (z); y)

Z(t ; U (t z), U (z))
+

Y (t ; U (t z), U (z); y)

Z(t ; U (t z), U (z))
·

X (t ; U (t z), U (t 2z); y)

Y (t ; U (t z), U (t 2z); y)

G (t ; z; y) =
Y (t ; U (t z), U (z); y)

Z(t ; U (t z), U (z))
·

Z(t ; U (t z), U (t 2z))

Y (t ; U (t z), U (t 2z); y).

After simplificationF and G can be written as given in the proposition.

Iterating (4.55) with z 7→ t 2z yields

Q(t ; U (z); y) =
∞
∑

n=0
F (t ; t 2n z; y)

n−1
∏

k=0

G (t ; t 2k z; y). (4.56)

Since F (t ; z; y) is a power series in t , with coefficients in Z[y, z], of the form 1+ t (y + 2z) +

O(t 2), and likewise G (t ; z; y) is a power series of the form t 6z2(y−1)+O(t 7), the sum in (4.56)

converges as a formal power series in t with coefficients in Z[y, z].

Finally, since S(t ; v) is the function satisfying U (t ; S(t ; v)) = v and S(t ; v) is a power series

in t with coefficients in Z[v] of the form v + t (v + v2)+O(t 2), we obtain (4.54). �

Once we have a solution to Q(t ; v; y), the final solution for E(t ; u, v; y) is easily obtained.

Theorem 4.32. The generating function E(t ; u, v; y) for equilateral prudent walks above an im-

penetrable surface, which end on the right side of their bounding triangle and accrue a weight y with
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each step along the surface, is given by

E(t ; u, v; y) =
1

K(t ; u, v)

�

X (t ; u, v; y) −
Y (t ; u, v; y)

Y (t ; u, D(t ; u); y)
�

X (t ; u, D(t ; u); y)

+Z(t ; u, D(t ; u))Q(t ; D(t ; u); y)
�

+Z(t ; u, v)Q(t ; v; y)
�

. (4.57)

The overall generating function for equilateral prudent walks above an impenetrable surface is then

W4(t ; u, v; y) =
∑

n,i , j ,ν

w4n,i , j ,ν t
n u i v j yν

= 2E(t ; u, v; y)− E(t ; 0, v; y)

where w4n,i , j ,ν is the number of n-step triangular prudent walks above an impenetrable surface which

end a distance i from the top of their bounding triangle, a distance j from the surface and have ν

steps along the surface.

Proof. To obtain E(t ; u, t u; y), substitute v = D(t ; u) into (4.53), cancelling the kernel, and

rearrange to get

E(t ; u, t u; y) =
−1

Y (t ; u, D(t ; u); y)
(X (t ; u, D(t ; u); y)+Z(t ; u, D(t ; u))Q(t ; D(t ; u); y)). (4.58)

Substituting (4.58) into (4.53) then yields the given form of E(t ; u, v; y). The overall generating

function is obtained by adding walks ending on the left and right of the bounding triangle, both

of which are counted by E . However walks ending at the top corner of their triangle have been

counted twice and thus we subtract E(t ; 0, v; y). �

Now armed with the generating function W4(t ; u, v; y), we wish to determine its singu-

larity structure. More specifically, we wish to know the location and nature of the dominant

singularity t4(y), and how it behaves as we vary the surface fugacity y from 0 to∞.

Similarly to our study of 1-sided prudent walks, we are interested in two specialisations of

the catalytic variables u and v: (u, v) = (1,1), corresponding to all equilateral walks; and (u, v) =

(1,0), corresponding to equilateral loops. Thus, we are now only concerned with W4(t ; 1, 1; y)

and W4(t ; 1, 0; y). Since D(t ; u) will only ever be evaluated at u = 1, we will henceforth just

write D instead of D(t ; 1).

Theorem 4.33. The location of the dominant singularity t4(y) of E(t ; 1, 1; y) is given by

t4(y) =







ρ=
p

17−3
4 ≈ 0.281, 0≤ y ≤ χ = 7+

p
17

4 ≈ 2.78
y2−
p

y(−4+8y−4y2+y3)
2y(y−1) , y >χ

The dominant singularity is a simple pole for all y ≥ 0 except at y = χ , where it is a double pole.

The free energy is thus κ4(y) =− log t4(y). The derivative of κ4(y) is discontinuous at y = χ , and

thus the adsorption transition is first-order. The crossover exponent is φ= 1.
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Figure 4.21: A plot of t4(y) (solid) and tY (y) (dashed) for 0≤ y ≤ 15. Note that tY (y) undergoes

a smooth (second-order) phase transition while t4(y) has a first-order transition.

In Figure 4.21 we plot the singularity functions t4(y) and tY (y).

We will prove Theorem 4.33 by showing that, for a given y ≥ 0, E(t ; 1, 1; y) is singular

at t = t4(y) and non-singular for all |t | < t4(y). As we have found no way to significantly

simplify E(t ; u, v; y) beyond the formulation given in (4.57), we will consider its constituent

parts individually.

We first note that

K(t ; 1, 1) = 0 at t =
−3±

p
17

4

and so the dominant singularity of K(t ; 1, 1)−1 is a simple pole at t = ρ.

Lemma 4.34. There is a square-root singularity in D at t = β = 0.295598..., a root of 1− 3β−
β2−β3 = 0. Apart from t = (y−1)−1, the terms X (t ; 1, 1; y), Y (t ; 1, 1; y), Z(t ; 1, 1), X (t ; 1, D ; y)

and Z(t ; 1, D) have no singularities smaller in absolute value than β.

Proof. This is clear by inspection for X (t ; 1, 1; y),Y (t ; 1, 1; t ) and Z(t ; 1, 1). There are other

square-root singularities in D but all have absolute value at least 1, and also simple poles in D at

t =±
p

2.

X (t ; 1, v; y) and Z(t ; 1, v; y) are also singular when t v = 1. But D is a power series in t

with non-negative integer coefficients (this can easily be shown by considering the recurrence

relations which determine the coefficients of D), so for |t | < β (β is the radius of convergence

of D), |t D | < t D |t=β = 0.21374... So X (t ; 1, D ; y) and Z(t ; 1, D) produce no new singularities

for |t |<β. �

We are left to consider the two infinite sums in Q(t ; 1; y) and Q(t ; D ; y), as well as Y (t ; 1, D ; y)−1.
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Lemma 4.35. For a given y ≥ 0, the dominant singularity of Y (t ; 1, D ; y)−1 is given by

tY (y) =







β≈ 0.296, 0≤ y ≤ γ ≈ 2.191
y2−
p

y(−4+8y−4y2+y3)
2y(y−1) , y > γ

where γ is a root of −1+ 4γ − 6γ 2+ 2γ 3 = 0. The singularity is a square-root singularity for y < γ ,

a pole of order 1/2 at y = γ and a simple pole for y > γ .

Proof. The y-dependent factor of Y (t ; 1, v; y)−1 is

1+ t (1− y)

1+ v(1− t (1+ t (1− y))− y)
.

(The other factors contribute only removable singularities at t = 0,−1.) The numerator is

clearly non-singular for all y; the denominator is 0 when

v(1− t 2)

1+ v − t v − t 2v
= y−1.

When v =D this reduces to

U ≡U (T ) =
1− t 2−

Æ

(1− t )(1− 3t − t 2− t 3)

2
= y−1 (4.59)

Now U is a power series in t with non-negative integer coefficients (as usual, this can be shown

by considering the quadratic of which U is a root) and radius of convergenceβ. So for any value

of y−1 ∈ [0,γ−1) (where γ−1 is just U |t=β), there will be a non-negative real solution t ∗ to (4.59)

with t ∗ ∈ [0,β). Moreover, any other solution t ′ must satisfy |t ′| > t ∗. The non-negative real

solution t ∗ is given by tY (y) for y > γ .

For |t | < β we have |U | < U |t=β = γ−1. This implies that for y−1 > γ−1, any solution to

(4.59) must lie outside |t | ≤β, and hence cannot be a dominant singularity of Y (t ; 1, D ; y)−1.

The nature of the singularity tY (y) is clear for y < γ and y > γ . At y = γ , the square-

root singularity and the simple pole coincide, and simple algebraic manipulation shows that

Y (t ; 1, D ;γ )−1 ∼ (t −β)−1/2 as t →β. �

The following minor result compares the two y-dependent singularities examined thus far.

Corollary 4.36. For y ≥ 0, the function tY (y) satisfies

tY (y)< (y − 1)−1

Proof. This is clearly true for y ≤ γ . For y > γ , both tY (y) and (y− 1)−1 are monotone decreas-

ing functions, and thus it is sufficient to compare their inverses, and show

t−1
Y (t ) =

1

U
<

1+ t

t
⇐⇒ U >

t

1+ t
.

But U−t/(1+t ) is a power series in t with non-negative coefficients, of the form t 2+3t 4+O(t 5),

and is thus positive for t ∈ (0,β). �
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At this stage we have in fact located the dominant singularity of E(t ; 1, 1; y):

t4(y) =min{ρ, tY (y)}.

The transition from ρ to tY (y) occurs at χ because tY (χ ) = ρ, and there is a double pole at that

point because both the y-dependent and -independent singularities contribute simple poles.

However, it remains to be shown that the infinite sums Q(t ; 1; y) and Q(t ; D ; y) are conver-

gent and non-singular for |t | ≤ t4(y).

By considering the quadratic of which σ(t ; v) is a root, it can be shown that the series coef-

ficients of σ(t ; v) are non-negative integers. So σ(t ; D) is a power series in t with non-negative

integer coefficients, and since |D |< 1 for |t |<β, we have |σ(t ; D)|< |σ(t ; 1)| for |t |<β, with

β being the radius of convergence of σ(t ; D).

Lemma 4.37. F (t ;σ(t ; 1); y),G (t ;σ(t ; 1); y),F (t ;σ(t ; D); y) andG (t ;σ(t ; D); y) are non-singular

for |t | ≤ t4(y).

Proof. Clearly none of the terms in the numerators of F and G contribute non-removable

singularities apart from the square root singularity at t = β. It suffices then to show that the

three terms which appear in the denominators,

(1+ t 4z), (1− t z(1− 2t 2)) and (1+ t 2z(1− y(1− t ))),

are nonzero for |t | ≤ t4(y). In the following z can be specialised to either t 2nσ(t ; 1) or t 2nσ(t ; D).

• 1+ t4z : For |t | ≤ ρ,

|t 4z |= |t 4||z | ≤ ρ4|z | ≤ ρ4σ(t ; 1)|t=ρ ≈ 0.0221.

So

|1+ t 4z | ≥ 0.977

• 1− t(1− 2t2)z : When z = t 2nσ(t ; 1), we have that t 2n+1(1− 2t 2)σ(t ; 1) is a power series

in t with non-negative integer coefficients. Then for |t | ≤ ρ,

|t 2n+1(1− 2t 2)σ(t ; 1)| ≤ |t (1− 2t 2)σ(t ; 1)| ≤ t (1− 2t 2)σ(t ; 1)|t=ρ ≈ 0.842.

So

|1− t 2n+1(1− 2t 2)σ(t ; 1)| ≥ 0.157

Since σ(t ; D) is bounded above by σ(t ; 1), the above precludes the existence of a root

when z = t 2nσ(t ; D).

• 1+ t2z(1− y(1− t)) : The root occurs when

t 2z(1− t )

1+ t 2z
= y−1, (4.60)
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so define

τn(t ; v) :=
t 2n+2σ(t ; v)(1− t )

1+ t 2n+2σ(t ; v)
.

It is easy to show τn(t ; v) is a power series in t with coefficients in Z≥0[v], so for v = 1

or D and y−1 ∈ [0,τn(t ; v)|t=β), the root of (4.60) of minimal absolute value will occur

on the positive real axis. Also,

τn+1(t ; v)

τn(t ; v)
=

t 2+ t 2n+4σ(t ; v)

1+ t 2n+4σ(t ; v)
< 1 for t ∈ [0,β),

so the τn are decreasing with n for relevant values of t .

Now

τ0(t ; 1) =
1− 2t + t 2−

p

1− 4t + 2t 2+ t 4

2
=U − t + t 2

where U is defined in (4.59). Recall that the y-dependent component of t4(y) is the solu-

tion to U = y−1. So if t = t4(y) and t > 0 (i.e. y <∞),

τ0(t ; 1) = y−1− t + t 2 < y−1,

and since τ0(t ; 1) is a non-decreasing function of t on [0,β), it follows that there are no

roots of τ0(t ; 1) = y−1 for t ≤ t4(y). Since τn+1(t ; 1)≤ τn(t ; 1), this statement extends to

all n, and similarly for v =D since τn(t ; D)≤ τn(t ; 1). �

Lemma 4.38. For a given y ≥ 0, the sum

Q(t ; v; y) =Q(t ; U (σ(t ; v)); y) =
∞
∑

n=0
F (t ; t 2nσ(t ; v); y)

n−1
∏

k=0

G (t ; t 2kσ(t ; v); y)

converges when |t | ≤ t4(y) for v = 1 or D.

Proof. All of the factors of F (t ; t 2n z; y) and G (t ; t 2n z; y) with no y-dependence (where z =

σ(t ; 1) or σ(t ; D)) can easily be bounded (in absolute value) uniformly with respect to n on the

disc |t | ≤ ρ, as can the term (1− y(1− t )+ t 2n+3z) in the numerator of G .

The term 1+ t y in the numerator of F has no dependence on n and can thus be trivially

bounded for a given y.

The remaining factor ofF and G is fn(t ; y) = (1+ t 2n+2(1− y(1− t ))z)−1. For |t | ≤ t4(y),

it is clear that

|1+ t 2n+2(1− y(1− t ))z | → 1 as n→∞,

and so for any c ∈ (0,1) and y <∞ there exists a positive integer N (depending on c and y) such

that

|1+ t 2n+2(1− y(1− t ))z |> c for all n ≥N and |t | ≤ t4(y).
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So for a given c , we have | fn(t ; y)| < c−1 for all n ≥ N . For n < N , the fn are all non-singular

for |t | ≤ t4(y) by Lemma 4.37, and thus each is bounded in absolute value on this disc by some

constant cn . Then | fn(t ; y)|<max{c−1, c0, c1, . . . , cN−1}.
We now have the existence of positive values cF (y) and cG (y) such that |F (t ; t 2n z; y)| <

cF (y) and |G (t ; t 2n z; y)/t 4n |< cG (y) for all n. Then
�

�

�

�

�

∞
∑

n=0
F (t ; t 2n z; y)

n−1
∏

k=0

G (t ; t 2k z; y)

�

�

�

�

�

<
∞
∑

n=0
cF (y)

n−1
∏

k=0

cG (y)|t |
4n = cF (y)

∞
∑

n=0
cG (y)

n |t |2n(n−1)

which converges for |t | ≤ t4(y). �

We now have all the necessary ingredients to verify Theorem 4.33.

Proof of Theorem 4.33. By construction, for a given y ≥ 0, t4(y) is the location of the singularity

of E(t ; 1, 1; y) closest to 0. The two components of t4(y), for y < χ and y > χ , are lines of

simple poles, so their point of intersection at (t , y) = (ρ,χ ) is thus a double pole in E(t ; 1, 1; y).

The derivative of t4(y) is discontinuous at y = χ , since

d

d y
tY (t )

�

�

�

�

�

t=χ

=
−393+ 95

p
17

32
≈−0.041. �

Corollary 4.39. The dominant singularity of W4(t ; 1, 1; y) for a given y ≥ 0 is given by t4(y).

Proof. Since E(t ; 0, 1; y) = 1+ 2tQ(t ; 1; y), and the singularities of Q(t ; 1; y) already appear in

E(t ; 1, 1; y), there are no singularities in W4(t ; 1, 1; y) not already present in E(t ; 1, 1; y). �

This wraps up our analysis of equilateral prudent walks; we are left to consider the singular

behaviour of equilateral prudent loops. Fortunately, most of the work is already done.

Lemma 4.40. The location of the dominant singularity of W4(t ; 1, 0; y), the generating function of

equilateral prudent loops, is given by tY (y) for y ≥ 0. This singularity is a square root singularity

for 0≤ y < γ , a pole of order 1/2 at y = γ and a simple pole for y > γ .

Since the derivative of tY (y) exists and is continuous for y ≥ 0, triangular prudent loops undergo

a second-order phase transition at y = γ . The crossover exponent is φ= 1/2.

Proof. We have that W4(t ; 1, 0; y) = 2E(t ; 1, 0; y)− 1, and with (4.52) and (4.58) it follows that

E(t ; 1, 0; y) =
1

1+ t − t y
(1+ t (1+ t )E(t ; 1, t ; y))

=
1

1+ t − t y

�

1−
t (1+ t )

Y (t ; 1, D ; y)
(X (t ; 1, D ; y)+Z(t ; 1, D)Q(t ; D ; y))

�

.
(4.61)

The arguments in the proofs of Lemmas 4.37 and 4.38 can easily be modified to show that

F (t ; t 2nσ(t ; D); y) and G (t ; t 2n(σ(t ; D); y) contain no poles for |t | ≤ tY (y), and that Q(t ; D ; y)

converges for |t | ≤ tY (y). So Q(t ; D ; y) is non-singular for |t | ≤ tY (y), except for a square root

singularity at t = β. It then follows by Lemmas 4.34 and 4.35 and Corollary 4.36 that the

location of the dominant singularity for triangular prudent loops is given by tY (y). �
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Corollary 4.41. For y ≥ 0, the density of monomers in the surface for equilateral prudent loops is

given by

δ`(y) =







0, 0≤ y ≤ γ ≈ 2.191
4−12y+12y2−5y3+y4+y(y−3)

q

y(−4+8y−4y2+y3)
2(y−1)(−4+8y−4y2+y3) , y > γ

where γ is a root of −1+ 4γ − 6γ 2+ 2γ 3 = 0, and for triangular prudent walks the density is given

by

δ4(y) =







0, 0≤ y <χ = 7+
p

17
4 ≈ 2.78

4−12y+12y2−5y3+y4+y(y−3)
q

y(−4+8y−4y2+y3)
2(y−1)(−4+8y−4y2+y3) , y >χ

We plot these density functions in Figure 4.22.

These results are both pleasing and somewhat disappointing. On one hand we have explicitly

solved a two-dimensional model of polymer adsorption which is not characterised by a direct-

edness restriction – the SAWs which feature in the model are able to step in all six directions on

the lattice. To our knowledge this is the first such model to be solved exactly. We were also able

to find explicit expressions for the free energy and surface monomer density of this model.

On the other hand, despite the considerable difference in the complexity of their respective

generating functions, the free energy of equilateral prudent walks is exactly the same as that of

1-sided prudent walks. This is not entirely surprising – as an equilateral walk takes more and

more inflating steps, its triangle grows bigger and bigger. This in turn means that a walk ending

on, say, the east side of its triangle must take successively more north-west steps to reach the top

corner of its triangle before it can ‘turn the corner’ and step onto the west side. This effectively

means that in the limit of infinitely long walks, the ‘average’ equilateral prudent walk behaves

essentially like a 1-sided prudent walk.
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Figure 4.22: Plots of the densities of monomers (edges) in the surface versus the interaction

strength y, for (a) equilateral prudent loops and (b) equilateral prudent walks. Note that the

first-order adsorption transition for walks results in a jump discontinuity in the density at y =

χ ≈ 2.78.
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Chapter 5

Summary

We have considered a number of aspects of self-avoiding walks and polygons in this thesis. The

results of Chapters 2 and 3 dealt almost entirely with enumerative properties of SAWs and SAPs,

and there we considered the general models as well as subclasses. In Chapter 4 we turned our

focus to the applications of SAWs in the modelling of polymer adsorption.

In Chapter 2 we examined the recent proof by Duminil-Copin and Smirnov [34] of the

exact value of the growth constant of SAWs on the honeycomb lattice. While their methods

do not seem to provide a way to obtain an analogous result for the square or triangular lattices,

we did find that they can be used to compute estimates for those cases. We calculated series for

SAWs in strips of small widths (up to 15 on the square lattice and 11 on the triangular), and

found values of the step fugacity x which satisfied identities similar to those found by Duminil-

Copin and Smirnov for the honeycomb lattice. As expected, when we extrapolated these values

we found that the limits matched the current estimates for the critical point (i.e. the reciprocal

of the growth constant) for each lattice. The precision of our estimates is only 1–2 digits less

than the current benchmarks. (Though, as we noted in Chapter 2, our estimates are biased,

as they rely on unproven assumptions regarding the limiting behaviour of certain generating

functions.) This new method for computing numerical estimates seems very promising, and in

the next chapter we discuss some possibilities for further applications.

In Chapter 3 we turned our attention from general SAWs to subclasses of SAWs and SAPs;

specifically, subclasses for which we can find recursive constructions and, hopefully, explicit

expressions for generating functions. A large part of the chapter was devoted to the enumeration

of 3-sided prudent polygons by area. While the recursive construction and resulting generating

function were relatively easy to obtain, we found that the singularity structure of that generating

function is surprisingly complicated. A very detailed analysis was thus required in order to

calculate the exact asymptotic form of the number of 3-sided prudent polygons. In addition, this

asymptotic form has some very unusual properties, including a transcendental-valued critical

exponent (where we would normally expect a rational value) and an oscillating function instead

of a constant critical amplitude. There remain a number of open questions regarding this model
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and its unusual asymptotic behaviour, and we mention some of these in the next chapter.

We also considered a number of other new subclasses of SAWs and SAPs, including perime-

ter and quasi-prudent walks and polygons. These are generalisations of the analogous prudent

objects, and are thus rather more difficult to construct and solve. We found solutions for some

classes of each, and as expected observed the growth constants to be larger than those of the cor-

responding prudent objects. However, the most general models remain unsolved at this time,

and so we instead gave numerical estimates of the relevant critical values. Finally, we examined

some new models on the honeycomb and triangular lattices. For both lattices we believe that

these new models are more numerous (in terms of the size of growth constant) than any other

currently-known solved models.

The third main part of the thesis, Chapter 4, dealt with two-dimensional models of polymer

adsorption. We first returned to the methodology of Duminil-Copin and Smirnov, and showed

that one of their key identities could be generalised to account for a fugacity y associated with

vertices in an impenetrable surface. One of the terms in this identity vanishes at y = 1+
p

2, the

value conjectured by Batchelor and Yung [7] to be the critical surface fugacity for this model. We

showed that our identity could be used to prove this fact. Our proof depends on the generating

function of bridges of height T disappearing in the limit T →∞, and the proof of this result

is given in Appendix A. We also considered an alternative geometry (essentially a 90◦ rotation

of the original) for which there is also a conjecture [6] for the critical surface fugacity, and

demonstrated that a similar identity and proof could be derived.

We then applied the same reasoning used in Chapter 2 to models of polymer adsorption on

the square and triangular lattices. In particular, we showed that our identity for the honeycomb

lattice could be used to calculate estimates of the critical surface fugacities for SAWs on other

two-dimensional lattices. We once again computed series for walks strips of small width, but

this time the series variable was the surface fugacity y. We then found values of y which satisfied

identities like the one for the honeycomb lattice. The extrapolations of these values matched

existing estimates for critical fugacities on the square lattice, and their precision exceeded that of

the existing estimates by several orders of magnitude. On the triangular lattice we were unable

to find any existing estimates, and thus believe our values to be the first of their kind. We do

note, however, that our estimates are biased, and thus at this stage there is no guarantee that they

are accurate.

Finally, we introduced some new solvable models of polymer adsorption, based on prudent

walks. These models differ from existing solvable models in that they are not directed – the

walks in question are able to take steps in all directions on their respective lattices. They thus

‘interpolate’ between the directed walk models and the more general SAW model. We obtained

solutions for several cases, including an asymmetric model on the square lattice and a symmetric

model on the triangular lattice. We proved the exact form of the free energy for the triangu-

lar model, and found the model to display some unexpected critical behaviour. In particular,
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we observed a first-order adsorption phase transition in the case when only one end of a walk

must be attached to the surface, and a second-order transition when both ends are attached. We

attempted to provide an intuitive explanation for this behaviour, but matters are further compli-

cated by the square lattice model, which does not exhibit the same phase transition behaviour.
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Chapter 6

Future work

In this chapter we discuss possible directions for future investigation related to this thesis. As

such we will divide it into three sections, broadly corresponding to Chapters 2, 3 and 4.

General SAWs and SAPs

• In light of the developments of Section 2.2, the most obvious next step is to investigate

how our methodology can be improved so as to give more accurate estimates. Further

advances in algorithms for enumerating SAWs in a strip (see Section B.1), or simply more

powerful computers, should enable us to generate series for strips of width greater than

those used in Chapter 2. Given how close our estimates are, in terms of precision, to

the best current estimates for the critical points on the square and honeycomb lattices,

it seems reasonable to suppose that only a small number of extra widths (perhaps two

or three) would be needed before we could actually improve on the precision of the best

known estimates.

• We have so far only applied this technique to the regular two-dimensional lattices. The

generalisation to non-regular two-dimensional lattices seems straightforward – all that

should be required is to generate series for the AT and BT generating functions in strips

for small T and then apply the same methods used in Chapter 2.

There is also the possibility that our techniques could be used to compute estimates for

higher-dimensional lattices, though the way forward there is rather less obvious. To begin

with, we have no reason to believe there is any three-dimensional lattice for which there

exists a parafermionic observable (or some higher-dimensional equivalent) satisfying an

identity like (2.3). If we could find one, this might suggest what form a “domain identity”

(like (2.10)) should take. Without such a guide, it is unclear even what geometry we should

restrict walks to – possibilities include slabs and tubes.

• We also mention here some recent work by Elvey Price et al. [36] which explores a gener-

alisation of the identity (2.3) to values of x away from the critical value xc. The authors use
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that result to prove an inequality relating two critical exponents of walks in a half-plane,

and to provide further evidence in support of a conjecture [35] regarding the probability

distribution of the winding angles of SAWs in a half-plane. It seems possible that their

methods (currently restricted to the honeycomb lattice) could be applied to other two-

dimensional lattices in a similar manner to our adaptation of the results of Duminil-Copin

and Smirnov.

Solvable subclasses

• There are a number of questions which arise from our results regarding 3-sided prudent

polygons. The most obvious (and, perhaps, the most difficult to answer) is why oscilla-

tions are present in the asymptotic form of pa(3)n , when such behaviour has never been

observed in any other polygon model. Can we find a combinatorial argument to explain

the complexity of the singular structure of the generating function?

Our results also raise the question as to what other polygon or walk models display os-

cillatory (or perhaps even more complex) asymptotic behaviour. Certainly there are no

rigorous results which preclude such behaviour being present in the general models of

SAWs or SAPs (in low dimensions, anyway), and the series we currently have at hand are

likely far too short to enable detection of such subtle variations. One is even forced to

wonder if there are any solved models in the literature where oscillatory behaviour has

been overlooked, with the authors simply taking for granted that the usual asymptotic

form cn gµn is applicable.

It may also be possible to solve the area-perimeter generating function of 3-sided prudent

polygons. If so, it would be interesting to study the scaling behaviour of said function

around its critical point, and to see if it is somehow set apart from other polygon models.

(See, for example, [101, 102].)

• We observe that there are ways of “combining” some of the models discussed in Chapter 3,

and we will mention two here. The first, a combination of prudent and perimeter walks,

would involve k-sided walks (recall that the definition of k-sided is the same for prudent

and perimeter walks) which must take prudent steps on one or more of their k sides, but

not on the others. For example, a 3-sided walk (which must end on the north, east or

west sides of its box) might be required to take prudent steps on the east and west sides of

its box, but not on the north side. Such a model would likely have a growth rate strictly

larger than that of 3-sided prudent walks, but may not be much more complicated to solve.

Another possibility involves a generalisation of the “weakly directed walks” of Bacher and

Bousquet-Mélou [2]. Recall that these are walks which, between any two visits to a hori-

zontal line, must be partially directed. We could instead define “weakly prudent walks”,

where between any two visits to a horizontal line, a walk must be prudent (or perhaps
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2-sided prudent, etc.). Given that weakly directed walks have a growth rate considerably

larger than that of the next-best solvable walk model (2-sided perimeter walks), it seems

likely that, if such a model is solvable, it would have an even greater growth rate.

• Our study of solvable models on the triangular and honeycomb lattices was restricted

to prudent walks. There is an obvious way to define prudent polygons on those lattices,

and these should be solvable whenever the corresponding walk model is. It would be

particularly interesting to discover if the asymptotic enumeration of prudent polygons by

area on these lattices displays any similarities to the square lattice case.

We can likewise define perimeter and quasi-prudent walks and polygons on the triangular

and honeycomb lattices, and these will almost certainly be more numerous (in terms of

the growth constants) than the prudent objects we have discussed in this thesis.

• There were several models discussed in Chapter 3 for which we were able to derive func-

tional equations that we were unable to solve. In most cases the problem was that the

generating functions had too many catalytic variables. We have techniques, like the ker-

nel method and its generalisations, for solving functional equations involving up to two

catalytic variables, but we have been unable to apply these techniques to equations with

three or more catalytic variables. We would very much like to have a method for solving

these equations, or at least have a definitive answer one way or the other as to whether

they can be solved.

• As with Chapter 2, we have restricted our investigations to models on the regular two-

dimensional lattices. Possibilities abound for solvable models on non-regular lattices.

Far more tantalising (though also more difficult) are possibilities for solvable models in

three dimensions. There exist some numerical results for prudent and perimeter walks on

the simple cubic lattice [9], though it is likely that any solvable model in three dimensions

would have to be far more restricted than either of those cases.

• All of the walk models we considered in Chapter 3 have (or are believed to have) metric

exponent ν = 1; that is, the mean squared end-to-end distance of walks of length n scales

as O(n2). As we mentioned in Subsection 3.3.3, there also exist solvable models with ν =

1/2, but those are rather unsatisfying, owing to the fact that the number of such walks does

not grow exponentially. It is widely believed that for general SAWs, the metric exponent

is ν = 3/4. It would thus be of great interest to find a solvable model with ν = 3/4, or at

least 1/2< ν < 1.

Interacting polymer models

• In Section 4.1 we consider two geometries of honeycomb lattice half-planes, and in both

cases we are able to derive identities involving a fugacity y associated with vertices on
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the surface. There are a number of other possible “geometries” that could be considered,

including

– a quarter-plane, rather than a half-plane, with (possibly different) fugacities associ-

ated with vertices on each of the two boundaries;

– more generally, a wedge of angle α ∈ (0,2π);

– a “striped” surface (see for example [71]), with two different fugacities associated

with alternating vertices in the surface.

• We pointed out earlier in this chapter that the estimates we obtained in Chapter 2 could

be improved with longer series or greater strip widths. The same is true of the results of

Section 4.2, though of course those results are (to our knowledge) already the most precise

estimates of the critical fugacities of the models we consider.

• As with Chapter 2, we restricted our numerical studies to the three regular two-dimensional

lattices. To our knowledge there are no existing results for adsorption models on non-

regular lattices, but it seems like our methods could be adapted to those settings with

minimal difficulty.

We also hope that there might be a way of applying our methods to adsorption models in

three dimensions, though there are a number of problems to address. Firstly, it is unclear

what geometry we would need to work in; a slab, with the adsorbing surface located on

one of the two bounding planes, seems the most likely candidate, but there are other

possibilities. Computing series in three dimensions is also fraught with difficulty, and

it seems likely that any series we could generate using current algorithms and hardware

would be too short for reliable estimates. Finally, the only estimates we have for the

critical points xc for three-dimensional lattices are very imprecise, and this may limit our

ability to compute reliable estimates for the critical surface fugacities.

• Proving Conjectures 4.22 and 4.23 would nicely round out our study of adsorbing prudent

walks. However, it would still leave the question as to why prudent walks on the square

lattice undergo a first-order transition regardless of whether the endpoint is on the surface

or not, while equilateral triangular walks undergo a second-order transition when they

end on the surface. We still believe that there should be an intuitive argument explaining

this difference.

• The prudent walk adsorption models we considered used only edge weights. We could also

examine the corresponding vertex-weighted models; these should be solvable whenever

the edge-weighted models are solvable. It seems reasonable to expect that the adsorption

transitions will be of the same order as the edge-weighted models. We could also consider

the models with both edges and vertices weighted (with different fugacities); such an idea

(using SAWs, not solvable walks) is discussed in [103].
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• The prudent models can be further enhanced by including another fugacity associated

with stiffness – the tendency of a walk to take collinear steps, rather than “turn corners”

(see for example [94, 70]). The inclusion of such a fugacity should not affect the solv-

ability of a model, though any singularity analyses will almost certainly be made rather

more complicated than before. We can also consider the effects of a pulling force (see for

example [87, 95]).

• Like directed walks, prudent walks could also be used to model inhomogeneous adsorp-

tion, where either the polymer or the surface (or both) is comprised of multiple types of

units, typically in some kind of regular pattern (see [71]). However, it is unclear at this

stage whether such models would be solvable.

• Polymer adsorption is also observed to occur at penetrable surfaces, such as the interface

between two layers of different fluids. Such phenomena can easily be modelled with SAWs

– a fugacity is still associated with vertices or edges in the surface, but now walks are no

longer restricted to remain on one side of the surface. Our prudent walks models could

easily be adapted to such a setting, though it is unclear precisely which ones would be

solvable.

• The model of adsorbing 2-sided prudent walks could be made simpler by placing the im-

penetrable surface on the line y =−x. We would then regain reflective symmetry, through

the line y = x, and would only need to use one generating function instead of two.1

• We finally note that all of the models considered in Chapter 4 are of adsorbing polymers,

and are based on self-avoiding walks. We can also model the adsorption of vesicles by

considering self-avoiding polygons interacting with a surface (see for example [110, 111]).

The techniques we used in Chapter 3 to enumerate solvable classes of SAPs should be

adaptable to the adsorption problem in a straightforward manner.

1Kind thanks to an examiner for pointing this out.
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Appendix A

BT (xc)→ 0 as T →∞

Define BT (x) as in Section 2.1; that is, BT is the generating function of self-avoiding bridges on

the honeycomb lattice which span a strip of width T . In this appendix we present a proof of the

following theorem.

Theorem A.1. The generating function BT (x) of self-avoiding bridges on the honeycomb lattice

spanning a strip of width T satisfies

lim
T→∞

BT (xc) = 0, (A.1)

where xc = 1/
Æ

2+
p

2 is the critical point of SAWs on the honeycomb lattice.

This result, together with Proposition 4.9, completes the proof of Theorem 4.2 – that the

critical surface fugacity for adsorbing SAWs on the honeycomb lattice is 1+
p

2.

Before starting the proof, let us introduce some additional notation; some of this notation

will differ from the rest of the thesis, but as this Appendix is almost entirely self-contained, we

hope that no confusion will arise. The set of mid-edges of the honeycomb lattice is denoted by

H. The coordinates of a point v will be denoted (x(v), y(v)). (Note that we take the edges of the

lattice to be of unit length.) The lattice has an origin a ∈ H, at coordinates (0,0). We consider

SAWs that start and end at a mid-edge. A SAW γ is denoted by the sequence (γ0, . . . ,γn) of its

mid-edges. The length of γ , that is, the number of vertices of the lattice it visits, is denoted

|γ | = n. To lighten notation, we often omit floor symbols, especially in indices: for instances,

γt should be understood as γbtc.

In Chapters 2 and 4 we discussed bridges in a vertical strip of width T . In this Appendix we

rotate the strip by 90◦, so that bridges now span a horizontal strip of height T . The convention

is chosen in such a way that a bridge of height T of minimal length contains exactly T vertical

edges, one of them being split into two half-edges (see Figure A.1).1 In general, we call bridge any

1This is in contrast to Chapters 2 and 4, where we would define such a bridge to have T + 1 vertical edges.

Redefining the height in this way makes things notationally simpler here.
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T = 5

Figure A.1: A bridge of height T = 5 on the honeycomb lattice.

SAW γ = (γ0, . . . ,γn) that is a bridge of height T for some T . Equivalently, y(γ0)< y(γi )< y(γn)

for 0< i < n. The set of bridges of length n is denoted by SABn .

The set Rγ of renewal points of γ ∈ SABn is the set of points of the form γi with 0 ≤ i ≤ n,

for which γ[0,i] := (γ0, . . . ,γi ) and γ[i ,n] := (γi , . . . ,γn) are bridges. We denote by r0(γ ),r1(γ ), . . .

the indices of the renewal points. That is, r0(γ ) = 0 and rk+1(γ ) = inf{ j > rk (γ ) : γ j ∈ Rγ } for

each k ≤ |Rγ | − 1. When no confusion is possible, we often denote rk (γ ) by rk .

A bridge γ ∈ SABn is irreducible if its only renewal points are γ0 and γn . Let iSAB be the set

of irreducible bridges of arbitrary length starting from a. Every bridge γ is the concatenation of

a finite number of irreducible bridges, the decomposition is unique and the set Rγ is the union

of the initial and terminal points of the bridges that comprise this decomposition.

Kesten’s relation for irreducible bridges (see [85, Section 4.2] or [78]) on the hypercubic

lattice Zd can be easily adapted to the honeycomb lattice. It gives
∑

γ∈iSAB

x |γ |c = 1.

This enables us to define a probability measure PiSAB on iSAB by setting PiSAB(γ ) = x |γ |c . Let

P⊗N
iSAB

denote the law on semi-infinite walks γ :N→H formed by the concatenation of infinitely

many independent samples γ [1],γ [2], . . . of PiSAB. We refer to [85, Section 8.3] for details on

related measures in the case of Zd . The definition of Rγ and the indexation of renewal points

extend to this context (we obtain an infinite sequence (rk )k∈N).

Observe that a bridge γ of length n has height H(γ ) = 2
3 y(γn) (since edges have unit length;

in particular a bridge of length 2 has height 1). We define its width by

W(γ ) =
1
p

3
max{x(γk )− x(γk ′), 0≤ k , k ′ ≤ n},

so that a bridge of length 2 has width 1/2.

It was proved in Section 4.1 that BT (xc, 1) converges as T →∞. We provide here an alterna-

tive proof, and relate the limit value to the average height of irreducible bridges.
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Lemma A.2. As T →∞,

BT (xc, 1)→
1

EiSAB(H(γ ))
.

Proof. The result follows from standard renewal theory. We can for instance apply [85, Theo-

rem 4.2.2(b)] to the sequence

fT :=
∑

γ∈iSAB: H(γ )=T

x |γ |c .

Indeed, with the notation of this theorem, vT = BT (xc, 1) and
∑

k k fk =EiSAB(H(γ )). �

Thus Theorem A.1 is equivalent to

EiSAB(H(γ )) =∞.

We will prove this by contradiction. Under the assumption that EiSAB(H(γ )) < ∞, we first

show that EiSAB(W(γ ))<∞. Then, we show that under these two conditions, an infinite bridge

is very narrow. The last step consists of proving that this cannot be the case. The argument

uses a “stickbreak” operation which perturbs a bridge by selecting a subpath and rotating it

clockwise by π
3 . The new path is a self-avoiding bridge for an adequately chosen subpath. But

its width is relatively large, contradicting the fact that bridges are narrow. The strategy of proof

is inspired by a recent paper by Duminil-Copin and Hammond, where SAWs are proved to be

sub-ballistic [33]. (That is, they proved that if the metric exponent ν, governing (among other

things) the mean squared end-to-end distance of SAWs, exists, then it is less than 1.)

Proposition A.3. If EiSAB(H(γ ))<∞, then EiSAB(W(γ ))<∞.

Proof. Consider the rectangular domain RT ,L of H depicted in Figure A.2, with its boundary

partitioned into four subsets A , B , E− and E+ (the mid-edges of E+ point up, those of E−

point down). We do not consider any kind of interactions here. As in Section 2.1, we define

four generating functions counting SAWs in the rectangle, going from a to a mid-edge of the

boundary. First, we set

ÃT ,L(x) :=
∑

γ :a A\{a}
x |γ |,

and then the generating functions B̃T ,L(x), Ẽ−
T ,L
(x) and Ẽ+

T ,L
(x) are defined similarly. We now

use the local identity of Lemma 2.1 with n = 0, θ = π/2, σ = 5π/24, and x−1
c = 2cos(π/8) to

prove the following global identity, analogous to (2.10):

1= αÃT ,L(xc)+ B̃T ,L(xc)+ ε
+ Ẽ+T ,L(xc)+ ε

− Ẽ−T ,L(xc), (A.2)

where α= cos( 3π8 ), ε
− = cos(π4 ) and ε+ = cos(π8 ).

Since we always evaluate our generating functions at x = xc, we will almost systematically

omit the variable xc, so that ÃT ,L now means ÃT ,L(xc), and so on.
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B

AL= 4
a

E+

E−
T = 6

E+

E−

Figure A.2: The rectangular domain RT ,L with T = 6 and L= 4.

As in Section 2.1, we would like Ẽ±
T ,L

to tend to 0 as the size of the rectangle increases. This

holds for fixed T as L increases, with the same argument as before, but now we want both T

and L to tend to infinity, so the matter is a bit more delicate. Recall that a loop is a SAW starting

from a, confined to the upper half-plane, and ending on the line y = 0. For L ∈ N, let aL(x) be

the generating function of loops ending L cells to the right of a. We will bound Ẽ±
T ,L

in terms of

a2L.

For m ∈ N, let e+m(x) be the generating function of walks in RT ,L ending on the the right

side of the rectangle, on the mth row of E+, so that, by symmetry, Ẽ+
T ,L
= 2
∑

m≤b T
2 c
e+m . Using

a reflection argument and the Cauchy-Schwarz inequality, we find

�

Ẽ+T ,L

�2 ≤ 4bT
2 c

∑

m≤b T
2 c

(e+m)
2 ≤ 4bT

2 c x−1
c a2L. (A.3)

The second inequality comes from the fact that one can concatenate two walks contributing

to e+m (after reflecting the second one) by adding a step between them in order to create a loop

contributing to a2L. We obtain a similar upper bound for Ẽ−
T ,L

with bT
2 c replaced by dT

2 e.
Assume that we couple T ≡ Tk and L ≡ Lk so that both tend to infinity as k grows, and

T a2L −→ 0. Then Ẽ+
T ,L

and Ẽ−
T ,L

tend to 0. Moreover, ÃT ,L increases with L and T , and con-

verges to A ≡ A(xc), where A(x) is the generating function of loops (this is finite, as discussed

just before Proposition 4.9). Returning to (A.2) shows that B̃T ,L must also converge, and gives

lim
k

B̃Tk ,Lk
= 1−αA(xc)

= lim
T

BT (xc, 1) by (2.12)

> 0 by assumption. (A.4)

Let us now return to random infinite bridges and use them to give an upper bound on B̃T ,L.

221



Let 0<δ < 1/EiSAB(H(γ )). We have

B̃T ,L =
∑

γ :a B
x |γ |c

≤ P⊗NiSAB

�

∃n ∈N : H(γ[0,rn]
) = T and W(γ[0,rn]

)≤ 2L
�

≤ P⊗NiSAB

�

H(γ[0,rδT ]
)≥ T

�

+P⊗NiSAB

�

∃n ≥ δT : H(γ[0,rn]
) = T and W(γ[0,rn]

)≤ 2L
�

.

Let γ [i] be the i th irreducible bridge of γ . Since the γ [i]’s are independent, we obtain

B̃T ,L ≤ P
⊗N
iSAB

�

H(γ[0,rδT ]
)≥ T

�

+P⊗NiSAB

�

∀i ≤ δT ,W(γ [i])≤ 2L
�

= P⊗NiSAB

�

H(γ[0,rδT ]
)≥ T

�

+PiSAB(W(γ )≤ 2L)δT

≤ P⊗NiSAB

�

H(γ[0,rδT ]
)≥ T

�

+ exp
�

−δT PiSAB(W(γ )> 2L)
�

.

Note that

H(γ[0,rδT ]
) =

δT
∑

i=1

H(γ [i]).

Hence the law of large numbers, together with the fact that δ ·EiSAB(H(γ )) < 1, implies that

P⊗N
iSAB

�

H(γ[0,rδT ]
) ≥ T

�

tends to 0 as T →∞. Hence, if we can couple T ≡ Tk and L ≡ Lk in

such a way that TPiSAB(W(γ )> 2L) tends to infinity, then B̃T ,L tends to zero.

We now argue ad absurdum. Assume that EiSAB(W(γ )) =∞. Then

limsup
L→∞

PiSAB(W(γ )> 2L)

a2L
=∞,

since aL is the term of a converging series (namely, the generating function A(xc) of loops) and

PiSAB(W(γ ) > L) is non-increasing in L and is the term of a diverging series (indeed, it sums to

EiSAB(W(γ )) =∞). Let (Lk )k be a sequence such that

lim
k→∞

PiSAB(W(γ )> 2Lk )

a2Lk

=∞,

and take

Tk =











1
Æ

a2Lk
PiSAB(W(γ )> 2Lk )











.

Then

Tk PiSAB(W(γ )> 2Lk )→∞ and Tk a2Lk
→ 0.

According to our two estimates of B̃T ,L, this means that limk B̃Tk ,Lk
is both zero and a positive

number, an absurdity. Therefore, EiSAB(W(γ ))<∞. �

Let Ω be the set of bi-infinite walks γ : Z → H such that γ0 = a. Let (γ [i], i ∈ Z) be a

bi-infinite sequence of irreducible bridges sampled independently according to PiSAB. Let P⊗Z
iSAB

denote the law on Ω formed by concatenating the bridges γ [i], i ∈ Z in such a way that γ [1]

222



starts at a. LetF be the σ -algebra generated by events depending on a finite number of vertices

of the walk.

We extend the indexation of renewal points to these bi-infinite bridges (we obtain a bi-infinite

sequence (rn(γ ))n∈Z such that r0(γ ) = 0). Let τ :Ω→Ω be the shift defined by τ(γ )i = γi+r1(γ )
−

γr1(γ )
for every i ∈ Z. (This is only defined if r1 exists, but this is the case with probability 1

under P⊗Z
iSAB

.) The shift translates the walk so that r1(γ ) is now at the origin a of the lattice.

Note that ri (τ(γ )) = ri+1(γ )− r1(γ ). Let σ denote the reflection in the real axis.

Proposition A.4. The measure P⊗Z
iSAB

satisfies the following properties.

(P1) It is invariant under the shift τ.

(P2) The shift τ is ergodic for (Ω,F ,P⊗Z
iSAB
).

(P3) Under P⊗Z
iSAB

, the random variables (σγn)n≤0 and (γn)n≤0 are independent and identically

distributed.

Proof. Property (P1) is fairly straightforward. Indeed, for every n > 0, the law of γ[r−n(γ ),rn(γ )]

determines, in the high-n limit, the law of γ (since we work with the σ -algebra F ). Now, the

laws of τ(γ[r−n+1(γ ),rn+1(γ )]
) and γ[r−n(γ ),rn(γ )]

are the same by construction (both are the law of 2n

concatenated independent irreducible bridges). Thus (P1) follows by letting n→∞.

Let us turn to (P2). Consider a shift-invariant event A. We want to show that P⊗Z
iSAB
(A) ∈

{0,1}. Let ε > 0. There exists n > 0 and an event An depending only on the vertices γ−n , . . . ,γn

such thatP⊗Z
iSAB
(An∆A)≤ ε, where∆ denotes the symmetric difference. In particular, |P⊗Z

iSAB
(A)−

P⊗Z
iSAB
(An)| ≤ ε. By extension, An depends only on vertices in γr−n

, . . . ,γrn
. Invariance of A under

τ implies that A= τ−2n(A), so that

P⊗ZiSAB(A) = P
⊗Z
iSAB

�

A∩τ−2n(A)
�

. (A.5)

Moreover,

�

�

�P⊗ZiSAB

�

A∩τ−2n(A)
�

−P⊗ZiSAB

�

An ∩τ
−2n(An)

�

�

�

�

≤ P⊗ZiSAB

�

A∆An
�

+P⊗ZiSAB

�

τ−2n(A)∆τ−2n(An)
�

≤ 2ε .

Using (A.5) and the independence between the walk before and after rn , this reads

|P⊗ZiSAB(A)−P
⊗Z
iSAB(An)

2| ≤ 2ε,

which, combined with |P⊗Z
iSAB
(A)−P⊗Z

iSAB
(An)| ≤ ε, implies

|P⊗ZiSAB(A)−P
⊗Z
iSAB(A)

2| ≤ 4ε .

By letting ε tend to 0, we obtain that P⊗Z
iSAB
(A) = P⊗Z

iSAB
(A)2 and therefore P⊗Z

iSAB
(A) ∈ {0,1}.

Hence (P2) is proved.
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Figure A.3: Left: A bridge having 3 diamond points. Right: A stickbreak operation applied to

this bridge.

Since the law of irreducible bridges is invariant (up to a translation) under reflection with

respect to a horizontal line, (P3) is straightforward. �

Renewal points separate a walk into two parts, located below and above the point. We now

introduce a more restrictive notion, illustrated in Figure A.3 (left). A mid-edge γk of a walk γ is

said to be a diamond point if

• it lies on a vertical edge of the lattice,

• the walk is contained in the cone

�

(γk −
i
2 )+R+e iπ/3+R+e2iπ/3�∪

�

(γk +
i
2 )−R+e iπ/3−R+e2iπ/3�

(recall that edges have length 1). The set of diamond points of γ is denoted by Dγ . Of course,

it is a subset of Rγ . The following proposition tells us that, under our assumption, a positive

fraction of renewal points are diamond points.

Proposition A.5. If EiSAB(H(γ ))<∞, then there exists δ > 0 such that

P⊗NiSAB

 

liminf
n→∞

|Dγ ∩{0, . . . ,rn}|

n
≥ δ

!

= 1.

Let us first provide a heuristic argument. Since EiSAB(H(γ )) is finite, so is EiSAB(W(γ ))

(Proposition A.3). Then EiSAB(x(γ|γ |)) = 0, and the law of large numbers implies that the
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prefixes of an infinite bridge are tall and skinny – that is, height grows linearly, width grows

sub-linearly. So the probability of a bridge staying within a cone as thin as one likes is positive

and a similar result going backwards. Thus, diamond points occur with positive density among

renewal points.

Proof. We first prove that P⊗Z
iSAB
(γ0 ∈ Dγ ) > 0. Proposition A.3 shows that EiSAB(W(γ )) <∞.

Hence EiSAB(x(γ|γ |)) is well-defined, and is 0 since the law of an irreducible bridge is invariant

under the reflection with respect to the imaginary axis. The law of large numbers thus implies

that, P⊗N
iSAB

-almost surely, x(γrn
)/n −→ 0. Since the expected width of irreducible bridges is

finite, a classical use of the Borel-Cantelli Lemma shows that W(γ[rn ,rn+1]
)/n −→ 0 almost surely.

Thus
1

n

�

|x(γrn
)|+W(γ[rn ,rn+1]

)
�

−→ 0 a.s.

Since

W(γ[0,rn]
)≤ 2max{|x(γrk

)|+W(γ[rk ,rk+1]
), 0≤ k ≤ n− 1},

we find that, P⊗N
iSAB

-almost surely, W(γ[0,rn]
)/n −→ 0.

Let us now apply the law of large numbers to y(γrn
). We obtain that, P⊗N

iSAB
-almost surely,

y(γrn
)/n −→ 3

2EiSAB(H(γ ))> 0.

We deduce that

I (γ ) := inf
k≥0

�

y(γk )−
p

3|x(γk )|+ 1/2
�

is finite P⊗N
iSAB

-almost surely. Note that for an infinite bridge γ = (γ0,γ1, . . .), the origin γ0 is a

diamond point if and only if I (γ )≥ 0. Let K ∈N be such that ρK := P⊗N
iSAB
(I (γ )≥−K)> 0. We

are going to show that

ρ0 ≥ (2x4
c )

KρK > 0. (A.6)

To prove (A.6), consider an experiment under which the law P⊗N
iSAB

is constructed by first con-

catenating K independent samples of PiSAB (starting from a) and then an independent sample γ ′

of P⊗N
iSAB

. If each of the K samples happens to be a walk of length 4 going from a to a + 3i and

I (γ ′)≥−K , then the complete walk γ satisfies I (γ )≥ 0. The probability that the i th sample of

PiSAB is a walk of length four going from a to a + 3i is 2x4
c . Thus, the experiment behaves as

described with probability (2x4
c )

KρK , and we obtain (A.6), that is, P⊗N
iSAB
(γ0 ∈Dγ )> 0.

Using Property (P3) of Proposition A.4, we deduce that

δ := P⊗ZiSAB(γ0 ∈Dγ ) =
�

P⊗NiSAB(γ0 ∈Dγ )
�2
> 0.

The shift τ being ergodic (cf. Property (P2) of Proposition A.4), the ergodic theorem, applied

to 1γ0∈Dγ
, gives

P⊗ZiSAB

 

lim
n→∞

|Dγ ∩{0, . . . ,rn(γ )}|

n
= δ

!

= 1 .
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Let γ be a bi-infinite bridge, and denote γ+ = γ[0,∞). Then for n ≥ 0, rn(γ ) = rn(γ
+) and

Dγ ∩{0, . . . ,rn(γ )}=Dγ ∩{0, . . . ,rn(γ
+)} ⊂Dγ+ ∩{0, . . . ,rn(γ

+)}

since all diamond points of γ are diamond points of γ+. This implies that

P⊗NiSAB

 

liminf
n→∞

|Dγ ∩{0, . . . ,rn(γ )}|

n
≥ δ

!

= P⊗ZiSAB

 

liminf
n→∞

|Dγ+ ∩{0, . . . ,rn(γ )}|

n
≥ δ

!

≥

P⊗ZiSAB

 

liminf
n→∞

|Dγ ∩{0, . . . ,rn(γ )}|

n
≥ δ

!

= 1.

This concludes the proof of the proposition. �

We are finally ready to complete the proof.

Proof of Theorem A.1. By Lemma A.2, we want to prove that EiSAB(H(γ )) = ∞. We argue ad

absurdum. Assume EiSAB(H(γ ))<∞ and let ν > EiSAB(H(γ )). Also, let 0< ε < δ/20, where δ

satisfies Proposition A.5.

We denote by Ω+ the set of semi-infinite walks in the upper half-plane. That is, φ =

(φ0,φ1, . . .) ∈ Ω+ if and only if y(φi ) > 0 for i > 0. For φ ∈ Ω+ and γ a finite bridge, we

denote γ /φ if φ[0,|γ |] = γ and φ|γ | is a renewal point of φ. Note that

x |γ |c = P
⊗N
iSAB(φ ∈Ω

+ : γ /φ) . (A.7)

Let SABn denote the set of finite bridges γ with exactly n+ 1 renewal points (meaning that

rn(γ ) = |γ |) such that

(C1) H(γ )≤ νn,

(C2) |Dγ | ≥ δn/2.

Let us define SAB
+
n = {φ ∈ Ω

+ : ∃γ ∈ SABn such that γ /φ}. That is, the prefix of φ consisting

of its n first irreducible bridges satisfies (C1) and (C2). It follows from (A.7) that

P⊗NiSAB

�

SAB
+
n

�

=
∑

γ∈SABn

x |γ |c . (A.8)

We now prove that

P⊗NiSAB

�

SAB
+
n

�

−→ 1 as n→∞ . (A.9)

We consider conditions (C1) and (C2) separately. Condition (C1) for γ ∈ SABn translates for

φ ∈ SAB
+
n into H(φ[0,rn(φ)]

)≤ νn. Since EiSAB(H(γ ))< ν , the law of large numbers gives

P⊗NiSAB

�

φ ∈Ω+ : H(φ[0,rn(φ)]
)≤ νn

�

−→ 1.
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Let us now consider condition (C2), which translates into |Dφ[0,rn (φ)]
| ≥ δn/2. But

Dφ[0,rn (φ)]
⊃Dφ ∩{0, . . . , ,rn(φ)},

since the truncation operation φ → φ[0,rn(φ)]
can only create (and not annihilate) diamond

points. Thus Proposition A.5 yields

P⊗NiSAB

�

|Dφ[0,rn (φ)]
| ≥ δ

2 n
�

−→ 1,

and we have proved (A.9).

We are now going to prove that

P⊗NiSAB

�

W(φ[0,rνn+1(φ)]
)> εn

�

≥
�

δnxc

10(νn+ 2)

�2

P⊗NiSAB

�

SAB
+
n

�

. (A.10)

Since W(φ[0,rνn+1(φ)]
)/n tends to zero P⊗N

iSAB
-almost surely, as follows from the beginning of the

proof of Proposition A.5, this contradicts (A.9) and proves that our assumption EiSAB(H(γ )) <

∞ cannot hold.

Consider γ ∈ SABn . Let di be the index of the i th diamond point of γ . For integers i ∈
� δ

10 n, 2δ
10 n
�

and j ∈
� 3δ

10 n, 4δ
10 n
�

, let StickBreaki , j (γ ) be the following walk (see Figure A.3,

right):

StickBreaki , j (γ ) = γ[0,di ]
◦τ ◦ρ

�

γ[di ,d j ]
�

◦ τ̃ ◦ γ[d j ,rn]
, (A.11)

where ◦ stands for the concatenation of walks, ρ is the clockwise rotation of angleπ/3, τ is a sin-

gle right turn, and τ̃ is a left turn. The definition of diamond points implies that StickBreaki , j (γ )

is not only self-avoiding, but also a bridge. Also, note that we used (C2) in order to define

StickBreak(γ ) for all these values of i and j .

Let

Φ =
� δ

10 n, 2δ
10 n
�

×
� 3δ

10 n, 4δ
10 n
�

× SABn ,

and denote

S :=
∑

(i , j ,γ )∈Φ
x
|StickBreaki , j (γ )|
c .

One can express S in terms of P⊗N
iSAB

�

SAB
+
n

�

. Indeed, |StickBreaki , j (γ )|= |γ |+ 2, and therefore

S =
∑

(i , j ,γ )∈Φ
x |γ |+2

c =
�

δxcn

10

�2
∑

γ∈SABn

x |γ |c =
�

δxcn

10

�2

P⊗NiSAB

�

SAB
+
n

�

. (A.12)

We used (A.8) for the last equality. We are now going to give an upper bound on S, which will

imply (A.10).
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Note that the walk γ[di ,d j ]
contains at least δn/10 diamond points, and thus has height

h := H(γ[di ,d j ]
) ≥ δn/10. Rotating this walk by π/3 results in a walk of height at most h and

width at least h/2. Hence StickBreaki , j (γ ) has width at least δn/20> εn. By (C1), we also have

H(StickBreaki , j (γ )) ≤ νn + 1 and therefore StickBreaki , j (γ ) has at most νn + 2 renewal points.

Hence, for any φ ∈Ω+ such that StickBreaki , j (γ ) /φ, we have rνn+1(φ)≥ |StickBreaki , j (γ )| and

therefore W(φ[0,rνn+1(φ)]
)> εn. Thus, for any (i , j ,γ ) ∈Φ,

x
|StickBreaki , j (γ )|
c = P⊗NiSAB

�

φ ∈Ω+ : StickBreaki , j (γ ) /φ
�

= P⊗NiSAB

�

φ ∈Ω+ : StickBreaki , j (γ ) /φ and W(φ[0,rνn+1(φ)]
)> εn

�

.

Therefore,

S =
∑

(i , j ,γ )∈Φ
P⊗NiSAB

�

φ ∈Ω+ : StickBreaki , j (γ ) /φ and W(φ[0,rνn+1(φ)]
)> εn

�

= E⊗NiSAB

�

�

�

�

(i , j ,γ ) ∈Φ : StickBreaki , j (γ ) /φ
	�

� ·1{W(φ[0,rνn+1(φ)]
)>εn}

�

≤ (νn+ 2)2P⊗NiSAB

�

W(φ[0,rνn+1(φ)]
)> εn

�

. (A.13)

The last inequality follows from the fact that, for any given φ ∈ Ω+, the number of elements

(i , j ,γ ) of Φ such that StickBreaki , j (γ ) / φ is at most (νn + 2)2. Indeed, the triple (i , j ,γ ) is

completely determined if we specify in φ the renewal point that precedes the step denoted τ

in (A.11) and the one that follows the step τ̃. As both points occur before rνn+1, as explained

above, the bound (A.13) follows.

By combining (A.12) and (A.13) we obtain (A.10), which concludes the proof. �
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Appendix B

Techniques for computer enumeration

and series analysis

In this appendix we briefly discuss some of the methods used to obtain the numerical results

presented in this thesis. These methods generally fall into one of two categories: algorithms for

series generation and techniques for series analysis.

B.1 Enumeration of self-avoiding walks

There are three main types of enumerative algorithms used in this thesis. The most basic is back-

tracking, where walks or polygons are simply ‘grown’ one step at a time. Far more advanced (and

faster) is the finite lattice method, where walks are restricted to a finite geometry and constructed

by adding columns (or rows) to the lattice in a systematic way. Finally, models for which we

have functional equations can be enumerated even more quickly (i.e. in polynomial time) by

encoding these functional equations as recursions.

B.1.1 Backtracking

In a backtracking algorithm, walks of length n are enumerated simply by taking every walk of

length n − 1 and attempting to add every possible step to the end. The structure of such an

algorithm is roughly as follows:

• WALK is an object which tracks the vertices of the lattice which have been visited by a

walk. Typically, we know beforehand that our walks will be contained in, say, an n × n

grid, and then WALK would just be an n× n binary array.

• COUNTER is an object which tracks how many walks we have counted. If we will be

counting walks of lengths up to m, then COUNTER might be an m × 1 integer array,

where COUNTER(n) would be the number of walks of length n counted thus far.

229



• N tracks the length of the walk we are currently considering.

• CONDITIONS is a function which will take WALK as an argument, and output YES

if the walk satisfies the conditions required by the model being considered (e.g. self-

avoidance, quasi-prudence, etc.) or NO if it does not.

(0) Start with the empty walk. Set N = 0. Go to (1).

(1) Add an east step to WALK. Set N =N + 1. Go to (X), then (2).

(2) Add a north step to WALK. Set N =N + 1. Go to (X), then (3).

(3) Add a west step to WALK. Set N =N + 1. Go to (X), then (4).

(4) Add a south step to WALK. Set N =N + 1. Go to (X).

(X) Evaluate CONDITIONS(WALK).

– If YES, set COUNTER(N ) = COUNTER(N )+1. Go to (1).

– If NO, remove last step from WALK and set N =N − 1.

The running time for such an algorithm to count walks of lengths up to m will be roughly

O(µm), where µ is the exponential growth constant for the model under consideration.1 This

means that, in practice, such algorithms are very slow, and for models in two or more dimensions

they are only useful for counting walks of lengths up to perhaps 20 or 30. The upshot is that

they are very easy to program, and they are thus useful for quickly checking series obtained via

other methods. They are also sometimes the only option at our disposal – for example, when

enumerating quasi-prudent walks, we have no functional equations, nor any idea how to adapt

the finite lattice method.

B.1.2 Finite lattice method

This algorithm was used to produce some of the results of Sections 2.2 and 4.2. The following

description is thus specific to the geometries featuring in those sections; namely, finite-width

strips of the square, triangular and honeycomb lattices.

The algorithm used to enumerate SAWs on the square lattice builds on the pioneering work

of Enting [37] who enumerated square lattice self-avoiding polygons using the finite lattice

method. More specifically the algorithm is based in large part on the one devised by Conway,

Enting and Guttmann [23] for the enumeration of SAWs. The details can be found in [73].

Below we shall only briefly outline the basics of the algorithm and describe the changes made

for the particular problem studied in this work.

1Assuming such a constant exists, of course.
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Figure B.1: A snapshot of the boundary line (dashed line) during the transfer matrix calculation

of type A configurations on a strip of size 7× 10. SAWs are enumerated by successive moves of

the kink in the boundary line, as exemplified by the position given by the dotted line, so that one

vertex and two edges at a time are added to the strip. To the left of the boundary line we have

drawn an example of a partially completed SAW. The heavy lines at the top are the incoming

and outgoing edges of the SAW.

The generating function for a rectangle was calculated using transfer matrix (TM) techniques.

The most efficient implementation of the TM algorithm generally involves bisecting the finite

lattice with a boundary (this is just a line in the case of rectangles) and moving the boundary in

such a way as to build up the lattice vertex by vertex as illustrated in Figure B.1. If we draw a

SAW and then cut it by a line we observe that the partial SAW to the left of this line consists of a

number of loops connecting two edges (we shall refer to these as loop ends) in the intersection,

and pieces which are connected to only one edge (we call these free ends). The other end of the

free piece is an end point of the SAW so there are at most two free ends.

Each end of a loop is assigned one of two labels depending on whether it is the lower end or

the upper end of a loop. Each configuration along the boundary line can thus be represented by

a set of edge states {σi}, where

σi =



















0 empty edge,

1 lower loop-end,

2 upper loop-end.

3 free end.

(B.1)

If we read from the bottom to the top, the configuration or signature S along the intersection

of the partial SAW in Figure B.1 is S = {031212120}. Since crossings are not permitted this

encoding uniquely describes which loop ends are connected.

A few changes to the algorithm described in [73] are required in order to enumerate the
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restricted SAWs we study here. Most importantly the SAWs must have a free end at the middle

vertex of the top side of the strip. This is easily ensured by restricting the updating rules at this

vertex (also signatures prior to passing this vertex can have at most one free end). Specifically the

middle vertex is reached when the TM boundary has been moved halfway through the strip. At

this point the incoming edge to the left of the middle vertex is either empty, an upper loop-end

or free. In the empty case we have to insert a new free end (along either the horizontal or vertical

outgoing edge). In the upper case the loop-end is terminated and the matching lower loop-end

becomes a free end.

While in the free case the end is again terminated and all the edges connected to this free end

form a SAW. However this is only a valid configuration if all other edges are empty since other-

wise we would form configurations with more than one component. Secondly, in enumerating

SAWs of type A (i.e. the walks we have referred to as loops) the second free end must lie in the

top side of the rectangle; we chose to force the free end to lie to the left of the middle vertex and

use symmetry to count all possible configurations. In counting bridges or SAWs of type B the

second free end must lie at the bottom of the strip. Thirdly, in [73] the SAWs were forced to

span the rectangle, that is touch all sides, but this restriction is lifted in this study.

The sum over all contributing graphs is calculated as the boundary is moved through the

lattice. For each configuration of occupied or empty edges along the intersection we maintain

a generating function GS for partial walks with signature S. In exact enumeration studies GS

would be a truncated two-variable polynomial GS (x) where z is conjugate to the number of

steps.

In a TM update each source signature S (before the boundary is moved) gives rise to a few

new target signatures S ′ (after the move of the boundary line) and n = 0,1 or 2 new edges are

inserted leading to the update GS ′(x) = GS ′(x) + xnGS (x). Once a signature S has been pro-

cessed it can be discarded. In most studies the calculations were done using integer arithmetic

modulo several primes with the full integer coefficients reconstructed at the end using the Chi-

nese remainder theorem. Here we are not really interested in the exact coefficients. This makes

life a little easier for us since we can use real coefficients with the generating functions trun-

cated at some maximal degree M . The calculations were carried out using quadruple (or 128-bit)

floating-point precision (achieved in FORTRAN with the REAL(KIND=16) type declaration).

In our calculations we truncated AT (x) and BT (x) at degree M = 1000 and used strips of

half-length L= M . These choices of M and L more than suffice to ensure that numerical errors

are negligible as evidenced by the fact that when we solve (2.18) to find xc for the honeycomb

lattice the estimate for xc agrees with the exact value to at least 30 digits, that is, to within the

numerical accuracy of the floating-point computation itself.

The computational complexity of the calculation required to obtain the number of walks in

a strip of width T and length L can be easily estimated. Time (and memory) requirements are ba-

sically proportional to a polynomial in M and L times the maximal number of signatures, NConf,
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generated during the calculation. It is well established [72] that NConf ∝ 3T so the algorithm has

exponential computational complexity.

The transfer-matrix algorithm is eminently suited to parallel computations and here we used

the approach first described in [72] and refer the interested reader to this publication for further

detail. The bulk of the calculations for this paper were performed on the cluster of the NCI Na-

tional Facility, which provides a peak computing facility to researchers in Australia. The NCI

peak facility is a Sun Constellation Cluster with 1492 nodes in Sun X6275 blades, each contain-

ing two quad-core 2.93GHz Intel Nehalem CPUs with most nodes having 3GB of memory per

core (24GB per node). It took a total of about 1800 CPU hours to calculate AT (x) for T up to

15. So, the bulk of the time (almost 1250 hours) was spent calculating A15(x). In this case we

used 48 processors and the split between actual calculations and communications was roughly

2 to 1 (with quite a bit of variation from processor to processor). Smaller widths can be done

more efficiently in that communication needs are fewer and hence not as much time is used for

this task.

On a technical issue we note that quad precision is not a supported data type in the MPI

standard. So in order to pass messages containing the generating functions we used the MPI data

type MPI-BYTE with each coefficient then having a length of 16 bytes.

The algorithm used for the triangular lattice is quite similar. The triangular lattice is repre-

sented as a square lattice with additional edges along one of the main diagonals. This poses an

immediate problem since a boundary line drawn as in Figure B.1 would intersect 2T edges thus

greatly increasing the number of possible signatures. In this case it is more efficient to draw the

boundary line through the vertices of the lattice. We then again have T intersections, however

a vertex may be in an additional state since a partial SAW can touch the boundary line without

crossing it (see [75] for further details). The upshot is that the computational complexity grows

exponentially as 4T .

Computational complexity

The time T (W ) required to obtain the number of walks of in a strip of width W can be easily

estimated. Time (and memory) requirements are basically proportional to a polynomial (in M )

times the maximal number of configurations, NConf, generated during the calculation. When the

boundary line is straight and intersects W + 1 edges we can find the exact number of configura-

tions. First look at the situation with no free ends. The configurations correspond to Motzkin

paths [26] (just map 0 to a horizontal step, 1 to a north-east step, and 2 to a south-east step) and

the number of such paths Mn with n steps is easily derived from the generating function

M (x) =
∑

n
Mn x x =

1− x −
p

(1+ x)(1− 3x)

2x2
. (B.2)

The number of transfer matrix configurations NConf(W ) is simply obtained by inserting 0, 1 or

2 free ends into a Motzkin path and eliminating the path corresponding to a configuration of all
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0’s, hence

NConf(W ) =MW+1+(W + 1)MW +
(W + 1)W MW−1

2
− 1. (B.3)

With a kink in the boundary line the number of configurations lies between NConf(W ) and

NConf(W + 1). From (B.2) it is clear that NConf(W )∝ 3W .

Parallelisation

The transfer-matrix algorithm is eminently suited for parallel computations. The most basic

concern in any efficient parallel algorithm is to minimise the communication between proces-

sors and ensure that each processor does the same amount of work and uses the same amount of

memory. In practice one naturally has to strike some compromise and accept a certain degree

of variation across the processors.

One of the main ways of achieving a good parallel algorithm using data decomposition is

to try to find an invariant under the operation of the updating rules. That is we seek to find

some property of the signature which does not alter in a single iteration. The algorithm for the

enumeration of SAWs is quite complicated since an update at a vertex might change the state

of an edge far removed, for example when two lower loop ends are joined we have to relabel

one of the associated upper loop ends as a lower loop end in the new signature. However,

there is still an invariant since any edge not directly involved in the update cannot change from

being empty to being occupied and vice versa. That is only the kink edges can change their

occupation status. This invariant allows us to parallelise the algorithm in such a way that we can

do the calculation completely independently on each processor with just two redistributions

of the data set each time an extra column is added to the strip. This scheme was first used for

enumerating SAPs [72], and we refer the interested reader to this publications for further detail.

For the larger widths the configuration numbers are too small to ensure a decent balance with

just two redistributions (in fact some CPUs would be almost empty while others would exceed

the memory limit per CPU). Redistributing the configurations more often increases the length

of the invariant part of the signature and hence the number of configurations available for the

redistribution. Naturally there is a time penalty to be paid. For larger widths we used 3 or 4

redistributions per column.

Including surface interactions

The algorithms we use to enumerate SAWs interacting with a surface on the honeycomb, square

and triangular lattices builds on the algorithm outlined earlier in this subsection, and detailed

descriptions can be found in these papers [73, 75, 76]. Suffice to say that the generating functions

for a given strip were calculated using transfer matrix (TM) techniques.

The sum over all contributing graphs is calculated as the boundary is moved through the

lattice. For each configuration of occupied or empty edges along the intersection we maintain
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a generating function GS for partial walks with configuration S. In exact enumeration studies

GS would be a truncated two-variable polynomial GS (x, y) where x is conjugate to the number

of steps and y to the number of surface-contacts (sites or edges). In a TM update each source

configuration S (before the boundary is moved) gives rise to a few new target configurations S ′

(after the move of the boundary line) and n = 0,1 or 2 new edges and m = 0 or 1 new contacts

are inserted leading to the update GS ′(x, y) = GS ′(x, y) + xn y mGS (x, y). Here we are primarily

interested in the case where A(x, y) or B(x, y) are evaluated at the critical point x = xc . This

actually makes life easier for us since we can change to a single variable generating function

GS (y) and update signatures as GS ′(y) =GS ′(y)+ xn
c y mGS (y). Here GS (y) is a polynomial in the

contact fugacity y with real coefficients truncated at some maximal degree M . The calculations

were carried out using quadruple (or 128-bit) floating-point precision (achieved in FORTRAN

with the REAL(KIND=16) type declaration).

In our calculations we truncated A(xc, y) at degree M = 1000 and used strips of half-length

L = M . In Table B.1 we have listed estimates for y∗c (9) obtained from strips of width 9 and 10

(the crossing between A9(xc, y) and A10(xc, y)) for various values of M and L. Clearly the choice

M = L= 1000 suffices to estimate y∗(9) to more than 10 digits accuracy.

Table B.1: The estimated value of y∗(9) for the square lattice surface vertex model, truncated at

degree M and using strips of half-length from M up to 10M .

M L=M L= 2M L= 5M L= 10M

100 1.832547814756 1.778376701255 1.778024722094 1.778024722094

250 1.776250937231 1.775990603337 1.775990594686 1.775990594686

500 1.775990340341 1.775990291271 1.775990291271

1000 1.775990291271

The transfer-matrix algorithm is eminently suited for parallel computations and here we

used the approach first described in [72] and refer the interested reader to this publication for

further detail. The bulk of the calculations for this paper were performed on the cluster of the

NCI National Facility, which provides a peak computing facility to researchers in Australia.

The NCI peak facility is a Sun Constellation Cluster with 1492 nodes in Sun X6275 blades,

each containing two quad-core 2.93GHz Intel Nehalem CPUs with most nodes having 3GB

of memory per core (24GB per node). It took a total of about 3300 CPU hours to calculate

AT (xc, y) for T up to 15 on the square lattice. It is known [73] that the time and memory

required to obtain the number of walks in a strip of width T grows exponentially as 3T for the

honeycomb and square lattices and as 4T for the triangular lattice. So, the bulk of the time was

spent calculating A15 and B15, which amounted to almost 2300 hours in the square lattice case.

In this case we used 48 processors and the split between actual calculations and communications
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was roughly 2 to 1 (with quite a bit a variation from processor to processor). Smaller widths can

be done more efficiently in that communication needs are lesser and hence not as much time is

used for this task.

B.1.3 Recursions from functional equations

In the cases where we are able to derive a functional equation satisfied by the generating function

of the objects in question, it is usually possible to generate long series much more quickly than

would be possible with backtracking or the finite lattice method. We will illustrate this with

the relatively simple example of 2-sided perimeter walks. Recall the functional equation (3.100)

satisfied by the generating function of walks which end on the east side of their box:

 

1− t v −
t 2v

u − t
−

t 2uv

1− t u

!

R(t ; u, v) =
1

1− t u
−

t uv

u − t
R(t ; t , v)

+
t (2− t u)

1− t u
R(t ; t , 1)−

t 2u

1− t u
R(t ; t , t u)+

t 2u(1− v)

1− t u
R(t ; 0, 1),

where in R(t ; u, v) the variable t is conjugate to the length of a walk, u is conjugate to the

distance from the endpoint of a walk to the north-east corner of its box and v is conjugate to

the distance from the north-east corner of the box to the nearest occupied vertex on the north

side of the box.

This equation was obtained by grouping walks according to the location and direction of

their last inflating step – the last step which moved the north or east sides of the bounding box.

Here, we are essentially implementing the same method, but writing it purely in terms of the

coefficients rn,i , j . The notation X+= Y means that we set X =X +Y .

• R will be a three-dimensional array which tracks the coefficients rn,i , j as we compute

them, indexed by [n, i , j ]. If the greatest length we wish to compute is nmax , then restrict-

ing R to 0≤ n, i , j ≤ nmax is sufficient. Initially we fill R with zeros.

• First add the walks with no inflating steps: i.e. set R[n, n, 0] = 1 for 0≤ n ≤ nmax .

• Then loop over n, i , j : Taking 0≤ n ≤ nmax − 1, 0≤ i ≤ n and 0≤ j ≤ n− i is sufficient.

– If R[n, i , j ] = 0, skip to the next iteration of the loop.

– If R[n, i , j ]> 0, we can add an inflating step east. Then,

∗ North steps: For 1≤ l ≤min{i − 1, nmax − n− 1},

R[n+ l + 1, i − l , j + 1]+= R[n, i , j ].

If 1≤ i ≤ nmax − n− 1, then also

R[n+ i + 1,0,0]+= R[n, i , j ].
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∗ South steps: If i = 0, then for 0≤ l ≤ nmax − n− 1,

R[n+ l + 1, l , 0]+= R[n, i , j ].

If i > 0, then for 0≤ l ≤ nmax − n− 1,

R[n+ l + 1, l + i , j + 1]+= R[n, i , j ].

– If R[n, i , j ]> 0 and i ≤ nmax−n−1, we can reflect the walk through y = x and add

an inflating step north and i steps east, then, for 0≤ l ≤min{ j , nmax − n− i − 1},

R[n+ i + l + 1, l , 0]+= R[n, i , j ].

• At the end, for each n we sum R[n, i , j ] over all i and j , doubling the terms with i = 0.

The result will be the number of 2-sided perimeter walks of length n.

It can be easily seen that the running time of algorithms such as this will be polynomial in nmax ;

in this case, the running time is O(n4
max ).

B.2 Series analysis

In this section we will briefly discuss two types of methods used in this thesis for analysing

series of coefficients. The first and most rudimentary is generally known as the ratio method,

and was first used by Sykes in 1951 (see [55]). The second and far more advanced is the method

of differential approximants, first developed by Guttmann and Joyce [56] in 1972.

B.2.1 Ratio method

Recall from Chapter 1 that the number cn of SAWs of length n is known to satisfy

cn ∼ exp(κn+ o(n)),

with κ a lattice-dependent constant. Though it has not been proven, it is generally expected that

cn satisfies

cn ∼Anγ−1µn , (B.4)

with A, γ and µ= eκ constant. Nor has it been proven that

lim
n→∞

cn+1

cn
=µ,

though clearly if this limit does exist it must be equal to µ.

This gives us a particularly simple way of using the first terms in the sequence {cn} to search

for an estimate for µ: compute the sequence {cn+1/cn}, and attempt to determine the limit as

n →∞ (if it appears that such a limit exists). This will apply equally well to any sequence an
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Figure B.2: Plot of the sequence {t (3)n+1/t (3)n } against 1/n up to n = 800.

whose asymptotic behaviour is expected to resemble (B.4). For example, we can use the method

explained in Subsection B.1.3 to generate 800 terms in the sequence {t (3)n } of 3-sided prudent

walks on the triangular lattice. In Figure B.2 we plot the sequence {t (3)n+1/t (3)n } against 1/n, and

we can estimate that the sequence is approaching the limit 3.8413871.

The ratio method is not just limited to estimates for the growth rate µ, however. If we

expect (B.4) to be the asymptotic form of our coefficients, then it follows that

cn+1

cn
∼µ

�

1+
γ − 1

n
+ o
� 1

n

��

.

Thus, if we plot cn+1/cn against 1/n, and we are able to ignore the o(1/n) correction term

(which should be appropriate for large n), then we would expect the plot to become linear in

1/n, with gradient µ(γ −1). In Figure B.2 we can observe that as n increases, the gradient of the

curve is approaching 0, suggesting that γ = 1 for 3-sided prudent walks on the triangular lattice

(and thus that the dominant singularity of T (3)(t ) is a simple pole).

B.2.2 Differential approximants

This method is much more sophisticated than the ratio method, but as such its implementation

is significantly more involved. Since it has been in use for decades, we will only give a very brief

overview here, and direct interested readers to other references [56, 52] for more details.

The basic idea of the method of differential approximants is to find approximations of an

unknown generating function F (x) by searching for solutions to differential equations with
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polynomial coefficients. Since the singular behaviour of ODEs is a well-studied problem, it is

straightforward to then extract estimates for the singularities and corresponding exponents of

F (x).

An M t h -order differential approximant to a generating function F (x) is calculated by finding

polynomials Qk (x) and P (x), of degrees Nk and L respectively, which satisfy

M
∑

k=0

Qk (x)
�

x
d

d x

�k

F̃ (x) = P (x),

where F̃ (x) is a function whose first N = L+
∑

k (Nk+1) series coefficients match those of F (x).

In order to find a solution it is necessary to specify one of the coefficients of the Qk or P , since

as it is written now there are N + 1 unknown coefficients. It is customary to set QM (0) = 1.

The theory of ODEs then states that the singularities of F̃ (x) are found among the NM zeros

of QM (x), and these are then estimates of the singularities of F (x). There are standard methods

for computing the exponents of these singularities; for example, if xi is a single root of QM then

the exponent is

λi =M − 1−
QM−1(xi )

xi Q
′
M (xi )

,

so that

F̃ (x) ∼
x→xi

A(1− x/xi )
λi

for a constant A.
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