Two-dimensional self-avoiding walks and polymer adsorption: critical fugacity estimates

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

(http://iopscience.iop.org/1751-8121/45/5/055208)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 128.250.30.180
The article was downloaded on 14/02/2012 at 06:03

Please note that terms and conditions apply.
Two-dimensional self-avoiding walks and polymer adsorption: critical fugacity estimates

Nicholas R Beaton, Anthony J Guttmann and Iwan Jensen

ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia

E-mail: nbeaton@ms.unimelb.edu.au, t.guttmann@ms.unimelb.edu.au and i.jensen@ms.unimelb.edu.au

Received 28 November 2011, in final form 29 November 2011
Published 16 January 2012
Online at stacks.iop.org/JPhysA/45/055208

Abstract

Recently Beaton, de Gier and Guttmann proved a conjecture of Batchelor and Yung that the critical fugacity of self-avoiding walks (SAW) interacting with (alternate) sites on the surface of the honeycomb lattice is $1 + \sqrt{2}$. A key identity used in that proof depends on the existence of a parafermionic observable for SAW interacting with a surface on the honeycomb lattice. Despite the absence of a corresponding observable for SAW on the square and triangular lattices, we show that in the limit of large lattices, some of the consequences observed for the honeycomb lattice persist irrespective of lattice. This permits the accurate estimation of the critical fugacity for the corresponding problem for the square and triangular lattices. We consider both edge and site weighting, and results of unprecedented precision are achieved. We also prove the corresponding result for the edge-weighted case for the honeycomb lattice.

PACS numbers: 05.50.+q, 05.10.–a, 05.70.Np

1. Introduction

Self-avoiding walks (SAWs) in a half-space, originating at a site on the surface, are well-known and useful models of polymer adsorption, see [11, 21] for reviews. It is known [20] that the connective constant for such walks is the same as for the bulk case. To model surface adsorption, one adds a fugacity $y = e^\alpha$ to sites or edges on the surface. Let $c_{n}^+ (m)$ be the number of half-space walks of n-steps, with m monomers on the surface, and define the partition function as

$$Z_n(\alpha) = \sum_{m=0}^{n} c_{n}^+ (m) e^{m \alpha},$$

with $\alpha = -\epsilon/k_B T$, where ϵ is the energy associated with a surface site (or edge), T is the absolute temperature and k_B is Boltzmann’s constant. If ϵ is sufficiently large and negative, the
polymer adsorbs onto the surface, while if ϵ is positive, the walk is repelled by the surface. It has been shown by Hammersley, Torrie and Whittington [10] in the case of the d-dimensional hyper-cubic lattice that the limit
\[
\lim_{n \to \infty} n^{-1} \log Z_n(\alpha) \equiv \kappa(\alpha)
\]
exists, where $\kappa(\alpha)$ is the reduced, intensive, free-energy of the system. It is a convex, non-decreasing function of α, and therefore continuous and almost everywhere differentiable. Their discussion and proof apply \textit{mutatis mutandis} to the honeycomb and triangular lattices.

In the case of the honeycomb lattice there are two types of surface sites, marked as solid and empty circles in figure 1. In most studies just one of the two types is weighted, namely those marked with solid circles in figure 1. In this study, we also allow for a surface weight on the second type of sites and we study the case where all surface sites carry the same weight.

For $\alpha < 0$, $\kappa(\alpha) = \log \mu$ [20], where μ is the connective constant for SAW on the given lattice. For $\alpha \geq 0$, $\kappa(\alpha) \geq \max[\log \mu, \alpha]$. This behaviour implies the existence of a critical value α_c, such that for the hyper-cubic lattice, $0 \leq \alpha_c \leq \log \mu$. The situation as $\alpha \to \infty$ has only recently been rigorously established by Rychlewski and Whittington [19], who proved that $\kappa(\alpha)$ is asymptotic to α in this regime. As illustrated in figure 1, it is convenient to attach weights y to only half of the sites along the surface to allow for simplifications later on. In this case, the bounds on α_c become $0 \leq \alpha_c \leq 2 \log \mu$, or equivalently $1 \leq y_c = e^{\alpha_c} \leq \mu^2$.

Various other quantities exhibit singular behaviour at y_c. For example, the mean density of sites on the surface is given by
\[
\rho_n(y) = \frac{1}{n} \sum_m mc^+_n(m)y^m = \frac{1}{n} \frac{\partial \log Z_n(\alpha)}{\partial \alpha}.
\]
In the limit of infinitely long walks one has
\[
\rho(\alpha) = \frac{\partial \kappa(\alpha)}{\partial \alpha}.
\]
From the behaviour of κ given above, it can be seen that $\rho(\alpha) = 0$ for $y < y_c$ and $\rho(\alpha) > 0$ for $y > y_c$.

2. An identity for the honeycomb lattice with a boundary

In a recent paper, Beaton, de Gier and Guttmann [2] generalized a finite-lattice identity by Duminil-Copin and Smirnov [6] for the honeycomb lattice to the case where weights are introduced on alternating sites along a boundary as represented by the solid circles in figure 2. This resulted in a proof of a conjecture of Batchelor and Yung [1] that the critical surface fugacity of SAWs interacting with (alternate) sites on the surface of the honeycomb lattice is $1 + \sqrt{2}$. Here, we briefly outline the results.

Let H be the set of mid-edges on a half-plane of the honeycomb lattice. We define a domain $\Omega \subset H$ to be a simply connected collection of mid-edges. The set of sites adjacent to the mid-edges of Ω is denoted $V(\Omega)$. Those mid-edges of Ω which are adjacent to only one site in $V(\Omega)$ form $\partial \Omega$. Since surface interactions are the focus of this article, we will insist that at least one site of $V(\Omega)$ lies on the boundary of the half-plane.

Let γ be a SAW in a domain Ω. We denote by $\ell(\gamma)$ the number of sites occupied by γ and by $v(\gamma)$ the number of contacts with the boundary. Define the following observable, for $a \in \partial \Omega, z \in \Omega$, set

$$F(a, z; x, y, \sigma) := F(z) = \sum_{\gamma(a \rightarrow z) \subset \Omega} e^{-i\sigma W(\gamma(a \rightarrow z))} x^{\ell(\gamma)} y^{v(\gamma)},$$

where the sum is over all configurations $\gamma \subset \Omega$, for which the SAW goes from the mid-edge a to a mid-edge z, $W(\gamma(a \rightarrow z))$ is the winding angle of that SAW. See figure 1 for an example—the SAW shown there starts on the central mid-edge of the left boundary (shown as a) and ends at a mid-edge z. As the SAW runs from mid-edge to mid-edge, it acquires a weight x for each step and a weight y for each contact (shown as a solid circle) with the right-hand side boundary.
We define the following generating functions:

\[A_{T,L}(x, y) := \sum_{\gamma \subset S_{T,L}, \alpha \rightarrow a} x^{(\gamma)} y^{(\gamma)}, \]

\[B_{T,L}(x, y) := \sum_{\gamma \subset S_{T,L}, \alpha \rightarrow \beta} x^{(\gamma)} y^{(\gamma)}, \]

\[E_{T,L}(x, y) := \sum_{\gamma \subset S_{T,L}, \alpha \rightarrow \varepsilon \cup \bar{\varepsilon}} x^{(\gamma)} y^{(\gamma)}, \]

where the sums are over all configurations that have a contour from \(a \) to the \(\alpha \), \(\beta \) or \(\varepsilon \), \(\bar{\varepsilon} \) boundaries, respectively, for domains of height \(2L \) and width \(T \) as shown in figure 2. For the SAW model in the dilute regime, the result proved in [2] for the \(n \)-vector model simplifies (in the case \(n = 0 \)) to

\[1 = \cos \left(\frac{3\pi}{8} \right) A_{T,L}(x_c, y) + \cos \left(\frac{\pi}{4} \right) E_{T,L}(x_c, y) + \frac{y^* - y}{y(y^* - 1)} B_{T,L}(x_c, y), \quad (1) \]

where

\[y^* = \frac{1}{1 - 2x_c^2} = 1 + \frac{1}{\cos(\pi/4)}, \quad y^* x_c^2 = (2)^{-1/2}. \]

A simple corollary of (1) is that at \(y = y^* \) we have

Corollary 1.

\[1 = \cos \left(\frac{3\pi}{8} \right) A_{T,L}(x_c, y^*) + \cos \left(\frac{\pi}{4} \right) E_{T,L}(x_c, y^*). \quad (2) \]

The importance of this result is that the generating function \(B_{T,L} \) for \(y = y^* \) has disappeared from (2). In [2], we proved that the critical surface fugacity \(y_c \) is equal to \(y^* \). Using this result and taking the limit \(L \to \infty \), the geometry becomes a strip of width \(T \), and the corollary then becomes

\[1 = \cos \left(\frac{3\pi}{8} \right) A_T(x_c, y_c) + \cos \left(\frac{\pi}{4} \right) E_T(x_c, y_c). \quad (3) \]

In [2], we also proved that \(E_T(x_c, y) = 0 \) for all \(0 \leq y \leq y_c \). So (3) simplifies further to

\[1 = \cos \left(\frac{3\pi}{8} \right) A_T(x_c, y_c). \quad (4) \]

This is a remarkable equation in that it implies that \(y_c \) can be identified from the generating function \(A_T(x_c, y) \) for any width \(T \), simply by solving equation (4). To show the power of this observation, note that virtually by inspection one can write down the solution for strip width 0, which is

\[A_0(x, y) = \frac{2x^3y}{1 - x^2}. \]

Solving \(1/\cos \left(\frac{3\pi}{8} \right) = A_0(x_c, y) \), recalling \(x_c = 1/\sqrt{2} + \sqrt{2} \), gives \(y = y_c = 1 + \sqrt{2} \), the exact value of the critical fugacity.

For other lattices, and even for the honeycomb lattice with interactions at every surface site, we do not have an equivalent identity, such as \(1 = c_n A_T(x_c, y_c) \). However, if one plots
Figure 3. Square lattice with surface site interactions. $A_T(x_c, y)$ versus y for $T = 1, \ldots, 15$. Inset shows the intersection region on a finer scale.

$A_T(x_c, y)$ versus y in these cases, one might be forgiven for thinking that such an identity exists. In figure 3, we show a plot of $A_T(x_c, y)$ versus y, for a range of strip widths T. To graphical accuracy, it appears that there is a unique point of intersection for plots corresponding to higher values of T. Even finer resolution, see inset, suggests that this is the case. The actual small deviation can be seen from the data given in table 4.

We denote by $y_c(T)$ the point of intersection of $A_T(x_c, y)$ and $A_{T+1}(x_c, y)$. We observe that the sequence $\{y_c(T)\}$ is a monotone function of T. We argue, as in [3], that in the scaling limit all two-dimensional SAW models are given by the same conformal field theory. Since it is known for one of these models (i.e. honeycomb-lattice SAW with alternate site interactions) that the critical point can be found by requiring certain contour integrals to vanish, it follows that in the scaling limit the same should be true for all two-dimensional SAWs\(^1\). This is entirely consistent with our observations, and implies that $\lim_{T \to \infty} y_c(T) = y_c$.

This then suggests a potentially powerful new numerical approach to estimating y_c. One calculates the generating functions $A_T(x_c, y)$, for all strip widths $T = 0, 1, 2, \ldots, T_{\text{max}}$, uses these to calculate $y_c(T)$ for $T = 0, 1, 2, \ldots, T_{\text{max}-1}$ as defined above and then extrapolates this monotone sequence by a variety of standard sequence extrapolation methods. A similar idea was used to furnish estimates of x_c in [3].

In section 3, we describe the derivation of the generating functions $A_T(x_c, y)$ by the finite-lattice method for a range of strip widths T that are needed in this study. For the value of the critical step fugacity x_c, we use the exact result $x_c = 1/\sqrt{2} + \sqrt{2}$ for the honeycomb lattice, and the best available series estimates in the case of the square and triangular lattices. These are $x_c(\text{sq}) = 0.37905227776$ [13, 17], with uncertainty in the last digit, and $x_c(\text{tr}) = 0.2409175745$ [15], with similar uncertainty. We performed a sensitivity analysis of our critical surface fugacity estimates in order to determine how sensitive they are

\(^1\) We thank John Cardy for this observation.
to uncertainties in our estimates of x_c. The estimates of x_c are sufficiently precise that a change in our estimate of x_c by a factor of 10 times the estimated uncertainty will not change our estimates of the surface fugacity y_c even in the least significant digit.

In section 4, we estimate the critical fugacity by extrapolating $y_c(T)$ using a range of standard extrapolation algorithms. These are Levin’s u-transform, Brezinski’s θ algorithm, Neville tables, Wynn’s ϵ algorithm and the Barber–Hamer algorithm. Descriptions of these algorithms, and codes for their implementation, can be found in [9]. However, we find that the most precise estimates are given by the Bulirsch–Stoer algorithm [4]. This algorithm requires a parameter w, which can be thought of as a correction-to-scaling exponent. For the purpose of the current exercise, we have set this parameter to 1, corresponding to an analytic correction, which is appropriate for the two-dimensional SAW problem [5]. Our implementation of the algorithm is precisely as described by Monroe [18], and we retained 50-digit precision throughout.

We used this method to estimate the critical fugacity for all cases of interest for two-dimensional SAWs. For the honeycomb lattice, discussed in subsection 4.1, we have already proved [2] that $y_c = 1 + \sqrt{2}$ for the alternate site interaction model, as conjectured by Batchelor and Yung [1]. It is a straightforward consequence of this result—the argument is given in subsection 4.1 below—that for the honeycomb lattice with surface edge interactions (rather than site interactions), the critical fugacity is $\sqrt{1 + \sqrt{2}}$. For the honeycomb-lattice site interaction problem where every surface site interacts with the walk, we find the critical fugacity to be $y_c = 1.467 67$, where the error in this estimate (and all such estimates given below) is expected to be confined to a few parts in the last quoted digit. We know of no other estimate of this quantity in the literature.

In subsection 4.2, we discuss the critical fugacity for site- and edge-weighted adsorption on the square lattice. The only previous estimates for the site-weighted case can be found in [12], where Monte Carlo methods were used to obtain the estimate $y_c = 1.76 \pm 0.02$. Our estimate, $y_c = 1.775 64$ is three orders of magnitude more precise than this. For the edge-weighted case, a transfer matrix (TM) estimate is given in [8], and is $y_c = 2.041 \pm 0.002$. In [7], a Monte Carlo estimate of comparable precision is given, $y_c = 2.038 \pm 0.002$. Our estimate is $y_c = 2.040 135$, again some three orders of magnitude more precise.

For the triangular lattice, discussed in subsection 4.3, we are unaware of any previous investigations of the critical fugacity. We find, in section 4.3, that $y_c($site$) = 2.144 181$ and $y_c($edge$) = 2.950 026$. We repeat that errors in our quoted estimates are expected to be confined to a few parts in the last quoted digit.

3. Enumeration of self-avoiding walks

The algorithms we use to enumerate SAW interacting with a surface on the honeycomb, square and triangular lattices are based on the algorithm outlined in our previous paper [3] and detailed descriptions can be found in these papers [14–16]. Suffice to say that the generating functions for a given strip were calculated using TM techniques. The most efficient implementation of the TM algorithm generally involves bisecting the finite lattice with a boundary (this is just a line in our case) and moving the boundary in such a way as to build up the lattice site by site. If we draw a SAW and then cut it by a line, we observe that the partial SAW to the left of this line consists of a number of loops connecting two edges in the intersection, and at most two unconnected or free edges. The other end of the free edge is an end point of the SAW; hence, there are at most two free ends.
The sum over all contributing graphs is calculated as the boundary is moved through the lattice. For each configuration of occupied or empty edges along the intersection, we maintain a generating function G_S for partial walks with configuration S. In exact enumeration studies, G_S would be a truncated two-variable polynomial $G_S(x, y)$, where x is conjugate to the number of steps and y to the number of surface contacts (sites or edges). In a TM update, each source configuration S (before the boundary is moved) gives rise to a few new target configurations S' (after the move of the boundary line) and $n = 0, 1$ or 2 new edges and $m = 0$ or 1 new contacts are inserted leading to the update $G_{S'} (x, y) = G_S (x, y) + x^n y^m G_S (x, y)$. Here, we are primarily interested in the case where $A(x, y)$ or $B(x, y)$ are evaluated at the critical point $x = \bar{x}$. This actually makes life easier for us, since we can change to a single variable generating function $G_S (y)$ and update signatures as $G_{S'} (y) = G_S (y) + x_0^c y^m G_S (y)$. Here, $G_S (y)$ is a polynomial in the contact fugacity y with real coefficients truncated at some maximal degree M. The calculations were carried out using quadruple (or 128 bit) floating-point precision (achieved in FORTRAN with the REAL(KIND=16)-type declaration).

In our calculations, we truncated $A(x_c, y)$ at degree $M = 1000$ and used strips of half-length $L = M$. In Table 1, we have listed estimates for $y_c (9)$ obtained from strips of width 10 and 9 (the crossing between $A_{10}(x_c, y)$ and $A_9(x_c, y)$) for various values of M and L. Clearly, the choice $M = L = 1000$ suffices to estimate $y_c (9)$ to more than 10-digit accuracy.

The TM algorithm is eminently suited for parallel computations, and here we used the approach first described in [13] and refer the interested reader to this publication for further detail. The bulk of the calculations for this paper were performed on the cluster of the NCI National Facility, which provides a peak computing facility to researchers in Australia. The NCI peak facility is a Sun Constellation Cluster with 1492 nodes in Sun X6275 blades, each containing two quad-core 2.93 GHz Intel Nehalem CPUs with most nodes having 3 GB of memory per core (24 GB per node). It took a total of about 3300 CPU h to calculate $A_T(x_c, y)$ for T up to 15 on the square lattice. It is known [14] that the time and memory required to obtain the number of walks in a strip of width T grows exponentially as 3^T for the honeycomb and square lattices and as 2^T for the triangular lattice. So the bulk of the time was spent calculating A_{15} and B_{15}, which amounted to almost 2300 h in the square-lattice case. In this case, we used 48 processors and the split between actual calculations and communications was roughly 2 to 1 (with quite a bit a variation from processor to processor). Smaller widths can be generated more efficiently in that communication needs are lesser and hence not as much time is used for this task.

4. Data analysis

4.1. Honeycomb lattice

In [2], we proved that the critical fugacity for the case of interactions with alternate sites on the honeycomb lattice is $y_c = 1 + \sqrt{2}$. There are two other cases to consider. The first is the
case of interactions with every surface site, and the second is the case of interactions with every edge. We will deal with the second case first, as it is a straightforward consequence of the proof given in [2] that \(y_c = \sqrt{1 + \sqrt{2}} \) in the second case. The proof of this result, in outline, is the following. We denote the generating functions \(A \) and \(B \), as defined in section 2, for the alternate site case considered in [2], by subscript \(a \) (for alternating). We denote the corresponding generating functions for the case with edge weighting with the subscript \(e \). Then it is clear by inspection that \(A_e(x_c, y) = A_a(x_c, y^2) \), as every time a walk contributing to the \(A \) generating function passes through \(n \) alternating surface sites, whether adjacent or not, it must pass through \(2n \) surface edges.

By the same argument, every time a walk contributing to the \(B \) generating function passes through \(n \) alternating surface sites, whether adjacent or not, it must pass through \(2n - 1 \) surface edges. This then gives rise to \(B_e(x_c, y) = \frac{1}{y} B_e(x_c, y^2) \). From either of these two equations it follows that \(y_c(\text{alternating}) = (y_c(\text{edge}))^2 \); hence, \(y_c(\text{edge}) = \sqrt{1 + \sqrt{2}} \).

We now consider the first case, in which every surface site carries a fugacity \(y \). We generated data for \(A_T(x_c, y) \) for \(T \leq 14 \), as described in section 3, and found the intersection points where \(A_T(x_c, y) = A_{T+1}(x_c, y) \), which defines \(y_c(T) \). These data are tabulated in table 2. Extrapolating \(y_c(T) \) as described above, we estimate

\[y_c = 1.46767. \]

We also find, by an identical method of extrapolation, that \(A(x_c, y_c) = 2.613 \), which is probably exactly \(1/\cos(3\pi/8) \), as is the case when considering interactions with every alternate site, see (4).

4.2. Square lattice

We next consider data for the square lattice, with every surface site (vertex) carrying a fugacity \(y \). We generated data for \(A_T(x_c, y) \) for \(T \leq 15 \) as described in section 3, and found the intersection points where \(A_T(x_c, y) = A_{T+1}(x_c, y) \), which defines \(y_c(T) \). These data are tabulated in table 3. Extrapolating \(y_c(T) \) as described above, we estimate

\[y_c = 1.77564. \]

We also find, by an identical method of extrapolation, that \(A(x_c, y_c) = 2.678405 \), which is 1.024981/\(\cos(3\pi/8) \). In [3] we found, for the non-interacting case (corresponding to \(y = 1 \),

Table 2. The value of \(y_c(T) \) estimated from the crossing of \(A_T(x_c, y) \) and \(A_{T+1}(x_c, y) \) for the honeycomb-lattice surface site model.

<table>
<thead>
<tr>
<th>(T)</th>
<th>(y_c(T))</th>
<th>(A_T(x_c, y_c(T)) = A_{T+1}(x_c, y_c(T)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.474342 684 974 343</td>
<td>2.758 023 465 753 132</td>
</tr>
<tr>
<td>2</td>
<td>1.471231 066 324 457</td>
<td>2.699 581 979 117 133</td>
</tr>
<tr>
<td>3</td>
<td>1.469859 145 369 675</td>
<td>2.671 309 655 463 187</td>
</tr>
<tr>
<td>4</td>
<td>1.469144 651 946 551</td>
<td>2.655 387 366 045 945</td>
</tr>
<tr>
<td>5</td>
<td>1.468728 339 703 417</td>
<td>2.645 467 247 042 683</td>
</tr>
<tr>
<td>6</td>
<td>1.468465 540 675 101</td>
<td>2.638 829 094 236 329</td>
</tr>
<tr>
<td>7</td>
<td>1.468289 428 840 316</td>
<td>2.634 145 423 791 235</td>
</tr>
<tr>
<td>8</td>
<td>1.468122 140 755 486</td>
<td>2.629 489 693 948 282</td>
</tr>
<tr>
<td>9</td>
<td>1.468008 309 717 543</td>
<td>2.626 054 066 036 805</td>
</tr>
<tr>
<td>10</td>
<td>1.467956 382 495 343</td>
<td>2.624 432 487 387 554</td>
</tr>
<tr>
<td>11</td>
<td>1.467915 603 443 970</td>
<td>2.623 117 304 368 586</td>
</tr>
<tr>
<td>12</td>
<td>1.467883 002 922 926</td>
<td>2.622 033 892 173 660</td>
</tr>
<tr>
<td>13</td>
<td>1.467856 536 243 392</td>
<td>2.621 129 346 334 020</td>
</tr>
</tbody>
</table>
Table 3. The value of $y_c(T)$ estimated from the crossing of $A_T(x_c, y)$ and $A_{T+1}(x_c, y)$ for the square-lattice surface site model.

<table>
<thead>
<tr>
<th>T</th>
<th>$y_c(T)$</th>
<th>$A_T(x_c, y_c(T)) = A_{T+1}(x_c, y_c(T))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.781 782 909 906 119</td>
<td>2.748 677 355 944 862</td>
</tr>
<tr>
<td>2</td>
<td>1.778 386 591 113 354</td>
<td>2.715 115 253 913 871</td>
</tr>
<tr>
<td>3</td>
<td>1.777 378 005 442 640</td>
<td>2.704 818 907 440 273</td>
</tr>
<tr>
<td>4</td>
<td>1.776 850 407 093 364</td>
<td>2.697 681 121 136 133</td>
</tr>
<tr>
<td>5</td>
<td>1.776 527 700 942 633</td>
<td>2.693 512 738 663 579</td>
</tr>
<tr>
<td>6</td>
<td>1.776 316 359 764 735</td>
<td>2.690 608 915 840 792</td>
</tr>
<tr>
<td>7</td>
<td>1.776 066 934 443 028</td>
<td>2.686 918 847 615 982</td>
</tr>
<tr>
<td>8</td>
<td>1.775 990 033 953 699</td>
<td>2.685 698 355 993 929</td>
</tr>
<tr>
<td>9</td>
<td>1.775 931 645 420 429</td>
<td>2.684 735 010 917 280</td>
</tr>
<tr>
<td>10</td>
<td>1.775 886 299 456 907</td>
<td>2.683 959 815 456 866</td>
</tr>
<tr>
<td>11</td>
<td>1.775 850 398 954 429</td>
<td>2.683 325 675 630 414</td>
</tr>
<tr>
<td>12</td>
<td>1.775 821 502 307 431</td>
<td>2.682 799 521 958 416</td>
</tr>
<tr>
<td>13</td>
<td>1.775 797 906 369 155</td>
<td>2.682 357 553 489 197</td>
</tr>
</tbody>
</table>

Table 4. The value of $y_c(T)$ estimated from the crossing of $A_T(x_c, y)$ and $A_{T+1}(x_c, y)$ for the square-lattice surface edge model.

<table>
<thead>
<tr>
<th>T</th>
<th>$y_c(T)$</th>
<th>$A_T(x_c, y_c(T)) = A_{T+1}(x_c, y_c(T))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.023 317 607 727 152</td>
<td>2.519 464 246 890 523</td>
</tr>
<tr>
<td>2</td>
<td>2.031 649 211 433 080</td>
<td>2.585 125 356 952 430</td>
</tr>
<tr>
<td>3</td>
<td>2.035 085 448 834 840</td>
<td>2.616 332 757 155 513</td>
</tr>
<tr>
<td>4</td>
<td>2.036 771 224 259 312</td>
<td>2.633 293 109 539 552</td>
</tr>
<tr>
<td>5</td>
<td>2.037 723 730 407 517</td>
<td>2.643 677 266 387 231</td>
</tr>
<tr>
<td>6</td>
<td>2.038 317 002 192 238</td>
<td>2.650 588 857 893 349</td>
</tr>
<tr>
<td>7</td>
<td>2.038 712 823 877 066</td>
<td>2.655 469 267 857 106</td>
</tr>
<tr>
<td>8</td>
<td>2.038 990 695 898 482</td>
<td>2.659 069 610 531 442</td>
</tr>
<tr>
<td>9</td>
<td>2.039 193 569 770 578</td>
<td>2.661 816 780 067 225</td>
</tr>
<tr>
<td>10</td>
<td>2.039 346 383 471 084</td>
<td>2.663 969 985 883 853</td>
</tr>
<tr>
<td>11</td>
<td>2.039 464 457 297 598</td>
<td>2.665 695 001 241 074</td>
</tr>
<tr>
<td>12</td>
<td>2.039 557 641 399 558</td>
<td>2.667 372 510 593</td>
</tr>
<tr>
<td>13</td>
<td>2.039 632 511 102 958</td>
<td>2.668 268 404 182 947</td>
</tr>
<tr>
<td>14</td>
<td>2.039 693 596 208 206</td>
<td>2.669 247 312 794 744</td>
</tr>
</tbody>
</table>

$A(x_c, 1) = 2.678 365 = 1.024 966 / \cos(3\pi/8)$. Thus, there appears to be a very weak y dependence. (In the normalization of the generating function $A_T(x_c, y)$ used here, two extra half-steps are included, giving an extra factor of the step fugacity x_c, compared to the value that would be quoted if contributing walks started and ended on the surface. This explains the difference between the values quoted in table 3 and the ordinates in figure 3.)

Table 4 shows the corresponding data for the edge-weighted case. Extrapolating $y_c(T)$ as described above, we estimate

$$y_c = 2.040 135.$$

We also find that $A(x_c, y_c) = 2.678 405$, which is $1.024 981 / \cos(3\pi/8)$. In [3] we found, for the non-interacting case (corresponding to $y = 1$), $A(x_c, 1) = 2.6783 = 1.0249 / \cos(3\pi/8)$. This is too imprecise to see any evidence of y dependence.
We next consider data for the triangular lattice, with every surface site (vertex) carrying a fugacity y. We generated data for $A_T(x_c, y)$ for $T \leq 11$ as described in section 3, and found the intersection points where $A_T(x_c, y) = A_{T+1}(x_c, y)$, which defines $y_c(T)$. These data are tabulated in Table 5. Extrapolating $y_c(T)$ as described above, we estimate $y_c = 2.144 181$.

We also find, by an identical method of extrapolation, that $A(x_c, y_c) = 4.970 02$, which is $1.901 944 / \cos(3\pi/8)$. In [3] we found, for the non-interacting case (corresponding to $y = 1$), $A(x_c, 1) = 4.970 111 = 1.901 979 / \cos(3\pi/8)$. Thus there again appears to be a very weak y dependence.

Table 6 shows the corresponding data for the edge-weighted case. Extrapolating $y_c(T)$ as described above, we estimate $y_c = 2.950 026$.
We also find that $A(x_c, y_c) = 4.9696$, which is $1.90178/\cos(3\pi/8)$. In [3] we found, for the non-interacting case (corresponding to $y = 1$), $A(x_c, 1) = 4.970111 = 1.90179/\cos(3\pi/8)$. Again, there is evidence of weak y dependence.

5. Conclusion

We have estimated the critical fugacity for surface adsorption for two-dimensional SAW on all regular lattices for both the case of site and edge interactions. Many of these estimates are new. Those that are not are several orders of magnitude more precise than pre-existing estimates. Uniquely for the case of the honeycomb lattice with edge interactions, we give the exact value of the critical fugacity, and also prove it. Our results are summarized in table 7.

Acknowledgments

AJG and IJ acknowledge financial support from the Australian Research Council. NRB was supported by the ARC Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS). This work was supported by an award under the Merit Allocation Scheme on the NCI National Facility at the ANU.

References