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Outlines of proofs of Results 4 and 5

Result 4. For any given knot type K, K admits a proper non-local knot pattern in a tube Tr y for L, M
sufficiently large, and admits a proper local knot pattern in a tube T/ py for L', M’ sufficiently large. Any
tube T which accommodates a local knot pattern for K also accommodates a non-local knot pattern.

We will prove here a more precise version of Result 4. First, we need a new definition. The
trunk of a knot or link K is an invariant defined by trunk(K) = ming max;cg [k~ (¢) N E|, where
E is any embedding of K in R3and #: R® — R is any given height function [1,3]. For another
invariant, the bridge number b(K) of K, trunk(K) satisfies trunk(K) < 2b(K).

Result 4*. (A) A knot K admits a proper non-local knot pattern in Ty a1 if and only if trunk(K) < (L +
1)(M +1). (B) A knot K admits a proper local knot pattern in Ty p if trunk(K) < (L+1)(M+1) —2.

Given a polygon 7t € Pr, a hinge Hy of 7t is the set of edges and vertices lying in the intersection
of 77 and the y-z plane defined by {(x,y,z) : x = k}. See Figure 1(a) for an example.

Proof of Result 4*. (A) By [1, Theorem 1], we can construct a polygon of knot type K in Ty s if
and only if trunk(K) < (L+1)(M +1). Then we can obtain a proper knot pattern from such a
polygon by opening its ends, i.e. by removing an edge or edges (as appropriate) in each of the
left-most and right-most hinges. See Figure 2(a). We will show that there is a polygon which can
be opened at each end to yield a proper non-local knot pattern.

First we consider the case where trunk(K) > 6. Take a height function & and an embedding of
K, g, in T such that trunk(K) is attained and such that 7rx has the minimal number of critical
points with respect to h. We can choose one maximal point p and one minimal point 4 to make
a proper knot pattern so that each of the two arcs of 7tx — {p, g} has at least two critical points.
See Figure 2(b). Let K; and K; be the components of the link obtained by taking the numerator
closure of g — {p,q}. Then neither of K; nor K5 is K by the minimality of the number of critical
points of 7. It follows that the pattern is non-local. We can construct a polygonal model of K
satisfying the above conditions in a given tube.

Suppose trunk(K) = 4. First we consider the case where K is prime, i.e., K is a 2-bridge knot.
Take a Conway’s normal form with the minimal crossing number. Then there are at least two
strings of the 4-braid corresponding to the Conway’s normal form that contain crossings. Then
we can make a proper knot pattern so that both K; and Kj, the components of the numerator
closure, contain one each of such strings. Then the crossing numbers of K; and K; are strictly



(a)

(c)

Figure 1: (a) A 36-edge polygon 7t that fits inside T » with L > 2 and M > 1; the tube extends
without bound to the right and the span s(71) = 6. Blue vertices and edges denote the hinge H;
of 71, and green edges denote the section S3 of 7r. (b) The locations of the two pairs of vertical
red lines indicate the locations of the two 2-sections in this polygon; in this example, the polygon
can be decomposed into a start unknot pattern, a proper trefoil knot pattern, and an end unknot
pattern. The proper knot pattern is classified as non-local in this case. (c) A local proper knot
pattern in the same tube with span 7.

less than that of K. Hence neither of K; nor K; is K. We can construct a polygonal model of K
satisfying the above conditions in a given tube and it gives a non-local pattern. Suppose K is a
composite knot. Let L1 and L be knots such that K = L;#L; and L, is a prime knot. Then by the
above argument, we can create a non-local pattern for L;. By a connected sum operation, we can
then construct a polygon of K that gives a non-local proper knot pattern.

(B) Suppose trunk(K) < (L +1)(M + 1) — 2. Then by using a method of [1, Theorem 1], we can
construct a polygon inside a region in Ty s as in Figure 2(c) (left). Then by pulling out a part as
in Figure 2(c) (right) we have a local proper knot pattern. O

Result 5. Given a prime knot K # 0y that can occur in a 2 x 1 tube, there exists at least one proper local
knot pattern and at least one proper non-local knot pattern. Furthermore, at least for K € {31,41,51,52},
the span of a smallest proper local knot pattern of K in Ty is greater than that of a smallest proper
non-local knot pattern of K in T .

Proof. Any prime knot that can occur in a 2 x 1 tube is 2-bridge [1]. It is well known that any
2-bridge knot is represented by Conway’s normal form C(ay,--- ,a,), which is a closure of a
4-braid using only two generators ¢; and 0, [2]. Since there is no 03 and the fourth string in
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Figure 2: (a) A local 75 pattern obtained by opening ends of Conway’s normal form. (b) When
trunk(K) > 6 we can choose p and g so that each arc of g — {p, g} contains at least two critical
points. (c) By pulling out a part, we can construct a local knot pattern.

the Conway’s normal form is straight, we have a local knot pattern by opening both ends as in
Figure 2(a).

By [1, Lemma 3(1)], from a knotted polygon in a 2 x 1 tube with the smallest span we can obtain
a proper knot pattern with the smallest span in the 2 x 1 tube for that knot type by opening both
ends of the polygon. For K € {31,41,51,5,}, by applying the argument of [1, Theorem 4], we can
completely characterise the configurations of K with smallest span, see Figures 3(a), (b), (c), (d)
for examples. We can then conclude that the resulting proper knot patterns are all non-local. On
the other hand, in these cases a local proper knot pattern can be constructed by increasing the
span by one by the same method as in Figure 1(c). O
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Figure 3: (a) Two polygons of 31 in 2 x 1 tube with the smallest span 6; the first consists of 36
edges and the second consists of 38 edges. (b) A polygon of 4; in 2 x 1 tube with the smallest
span 8; this consists of 50 edges. (c) Two polygons of 5; in 2 x 1 tube with the smallest span 10;
these consist of 60 edges. (d) A polygon of 5; in 2 x 1 tube with the smallest span 10; this consists
of 62 edges.



