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Outlines of proofs of Results 4 and 5

Result 4. For any given knot type K, K admits a proper non-local knot pattern in a tube TL,M for L, M
sufficiently large, and admits a proper local knot pattern in a tube TL′,M′ for L′, M′ sufficiently large. Any
tube T which accommodates a local knot pattern for K also accommodates a non-local knot pattern.

We will prove here a more precise version of Result 4. First, we need a new definition. The
trunk of a knot or link K is an invariant defined by trunk(K) = minE maxt∈R |h−1(t) ∩ E|, where
E is any embedding of K in R3 and h : R3 → R is any given height function [1, 3]. For another
invariant, the bridge number b(K) of K, trunk(K) satisfies trunk(K) ≤ 2b(K).

Result 4*. (A) A knot K admits a proper non-local knot pattern in TL,M if and only if trunk(K) < (L +

1)(M + 1). (B) A knot K admits a proper local knot pattern in TL,M if trunk(K) < (L + 1)(M + 1)− 2.

Given a polygon π ∈ PT, a hinge Hk of π is the set of edges and vertices lying in the intersection
of π and the y-z plane defined by {(x, y, z) : x = k}. See Figure 1(a) for an example.

Proof of Result 4*. (A) By [1, Theorem 1], we can construct a polygon of knot type K in TL,M if
and only if trunk(K) < (L + 1)(M + 1). Then we can obtain a proper knot pattern from such a
polygon by opening its ends, i.e. by removing an edge or edges (as appropriate) in each of the
left-most and right-most hinges. See Figure 2(a). We will show that there is a polygon which can
be opened at each end to yield a proper non-local knot pattern.

First we consider the case where trunk(K) ≥ 6. Take a height function h and an embedding of
K, πK, in T such that trunk(K) is attained and such that πK has the minimal number of critical
points with respect to h. We can choose one maximal point p and one minimal point q to make
a proper knot pattern so that each of the two arcs of πK − {p, q} has at least two critical points.
See Figure 2(b). Let K1 and K2 be the components of the link obtained by taking the numerator
closure of πK − {p, q}. Then neither of K1 nor K2 is K by the minimality of the number of critical
points of πK. It follows that the pattern is non-local. We can construct a polygonal model of K
satisfying the above conditions in a given tube.

Suppose trunk(K) = 4. First we consider the case where K is prime, i.e., K is a 2-bridge knot.
Take a Conway’s normal form with the minimal crossing number. Then there are at least two
strings of the 4-braid corresponding to the Conway’s normal form that contain crossings. Then
we can make a proper knot pattern so that both K1 and K2, the components of the numerator
closure, contain one each of such strings. Then the crossing numbers of K1 and K2 are strictly
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Figure 1: (a) A 36-edge polygon π that fits inside TL,M with L ≥ 2 and M ≥ 1; the tube extends
without bound to the right and the span s(π) = 6. Blue vertices and edges denote the hinge H1

of π, and green edges denote the section S3 of π. (b) The locations of the two pairs of vertical
red lines indicate the locations of the two 2-sections in this polygon; in this example, the polygon
can be decomposed into a start unknot pattern, a proper trefoil knot pattern, and an end unknot
pattern. The proper knot pattern is classified as non-local in this case. (c) A local proper knot
pattern in the same tube with span 7.

less than that of K. Hence neither of K1 nor K2 is K. We can construct a polygonal model of K
satisfying the above conditions in a given tube and it gives a non-local pattern. Suppose K is a
composite knot. Let L1 and L2 be knots such that K = L1#L2 and L1 is a prime knot. Then by the
above argument, we can create a non-local pattern for L1. By a connected sum operation, we can
then construct a polygon of K that gives a non-local proper knot pattern.

(B) Suppose trunk(K) < (L + 1)(M + 1)− 2. Then by using a method of [1, Theorem 1], we can
construct a polygon inside a region in TL,M as in Figure 2(c) (left). Then by pulling out a part as
in Figure 2(c) (right) we have a local proper knot pattern.

Result 5. Given a prime knot K 6= 01 that can occur in a 2× 1 tube, there exists at least one proper local
knot pattern and at least one proper non-local knot pattern. Furthermore, at least for K ∈ {31, 41, 51, 52},
the span of a smallest proper local knot pattern of K in T2,1 is greater than that of a smallest proper
non-local knot pattern of K in T2,1.

Proof. Any prime knot that can occur in a 2× 1 tube is 2-bridge [1]. It is well known that any
2-bridge knot is represented by Conway’s normal form C(a1, · · · , an), which is a closure of a
4-braid using only two generators σ1 and σ2 [2]. Since there is no σ3 and the fourth string in
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Figure 2: (a) A local 75 pattern obtained by opening ends of Conway’s normal form. (b) When
trunk(K) ≥ 6 we can choose p and q so that each arc of πK − {p, q} contains at least two critical
points. (c) By pulling out a part, we can construct a local knot pattern.

the Conway’s normal form is straight, we have a local knot pattern by opening both ends as in
Figure 2(a).

By [1, Lemma 3(1)], from a knotted polygon in a 2× 1 tube with the smallest span we can obtain
a proper knot pattern with the smallest span in the 2× 1 tube for that knot type by opening both
ends of the polygon. For K ∈ {31, 41, 51, 52}, by applying the argument of [1, Theorem 4], we can
completely characterise the configurations of K with smallest span, see Figures 3(a), (b), (c), (d)
for examples. We can then conclude that the resulting proper knot patterns are all non-local. On
the other hand, in these cases a local proper knot pattern can be constructed by increasing the
span by one by the same method as in Figure 1(c).
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Figure 3: (a) Two polygons of 31 in 2× 1 tube with the smallest span 6; the first consists of 36
edges and the second consists of 38 edges. (b) A polygon of 41 in 2× 1 tube with the smallest
span 8; this consists of 50 edges. (c) Two polygons of 51 in 2× 1 tube with the smallest span 10;
these consist of 60 edges. (d) A polygon of 52 in 2× 1 tube with the smallest span 10; this consists
of 62 edges.
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