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Characterising knotting properties of polymers in
nanochannels†

N. R. Beaton, *a J. W. Eng,b K. Ishihara,c K. Shimokawa d and C. E. Soterosb

Using a lattice model of polymers in a tube, we define one way to characterise different configurations

of a given knot as either ‘‘local’’ or ‘‘non-local’’, based on a standard approach for measuring the ‘‘size’’

of a knot within a knotted polymer chain. The method involves associating knot-types to subarcs of the

chain, and then identifying a knotted subarc with minimal arclength; this arclength is then the knot-size.

If the resulting knot-size is small relative to the whole length of the chain, then the knot is considered to

be localised or ‘‘local’’; otherwise, it is ‘‘non-local’’. Using this definition, we establish that all but

exponentially few sufficiently long self-avoiding polygons (closed chains) in a tubular sublattice of the

simple cubic lattice are ‘‘non-locally’’ knotted. This is shown to also hold for the case when the same

polygons are subject to an external tensile force, as well as in the extreme case when they are as

compact as possible (no empty lattice sites). We also provide numerical evidence for small tube sizes

that at equilibrium non-local knotting is more likely than local knotting, regardless of the strength of the

stretching or compressing force. The relevance of these results to other models and recent experiments

involving DNA knots is also discussed.

1 Introduction

Motivated in part by experimental studies of DNA packing in
viral capsids1,2 and DNA translocation through nanopores,3–6

there has been much recent interest in understanding and
characterising the entanglement complexity of confined polymers,
and determining any dependencies on the extent or the mechanism
of confinement. For knots in polymers, one measure of interest has
been the average ‘‘size’’ of the knotted part of the polymer. With
such a measurement, one can then characterise the knotting as
‘‘local’’ when the size of the knotted part is small compared to the
whole length of the polymer, or otherwise as ‘‘non-local’’. Based on
polymer scaling theory and supporting numerical evidence, it is
generally accepted that local knotting is dominant for unconfined
polymers, as polymer length grows, while computer simulation
studies of knotting in collapsed or spherically confined polymers
suggest that non-local knotting dominates.7 Recent simulation and
experimental studies3,5,6,8 of an intermediate regime of confinement,
where the polymer is confined to a channel, tube or pore, such
that polymer growth or motion is tightly restricted in two spatial
dimensions but unrestricted in the third, has indicated that local

knotting dominates, unlike when all three spatial dimensions
are restricted. Some differences between the entanglement com-
plexity of open versus closed chains were also observed.

In this paper we explore this latter type of confinement
further using lattice models of both closed (self-avoiding poly-
gons) and open (self-avoiding walk) chains in tubular subsets of
the simple cubic lattice. One major advantage of the lattice
model approach is that we are able to prove results related to
knot localisation for arbitrary tube dimensions and, for the case
of small tube sizes, we are able to perform exact calculations
related to this. We study an equilibrium model of polymers in a
tube subject to a tensile force f and prove results about the
limiting free energy and the likelihood of occurrence of different
knotted patterns as a function of polymer length.

Our conclusions are presented as a series of eight Results.
Specifically, we provide both theoretical and numerical evidence
that for a knotted ring polymer at equilibrium in a nanochannel
or nanopore, a knot configuration such as that shown in Fig. 1(a)
is more likely than that shown in Fig. 1(b), regardless of
the strength of the force f and whether or not it is a compressing
( f o 0) or a stretching ( f 4 0) force (see Results 1–2). Further-
more, knot configurations such as that in Fig. 1(a) are on average
tighter than those in Fig. 1(b) and hence may be expected
to translocate through a nanopore faster (Result 3). We also
establish for the lattice model that, as observed experimentally, the
situation is quite different for open chains, with knot configura-
tions like that of Fig. 1(e) being rare (in fact exponentially rare)
compared to that shown in Fig. 1(f), because of the significant
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entropic disadvantage associated with the formation of a long bend
(Result 8).

To obtain and explain these results, it is necessary to first
characterise the differences between the different knotted con-
figurations in Fig. 1. We do this here by using two different
measures of knot size. For example, when one measures the
size of the knotted part according to the size of the region in
which the crossings are concentrated, then the configurations
shown in both Fig. 1(a) and (b) correspond to examples of
‘‘tight’’ knotting and this is consistent, for example, with a
measure of how long it would take the knotted part to translocate
through a nanopore. However, using another standard measure
for determining knot-size, namely using the length of a smal-
lest knotted subarc, leads to characterising Fig. 1(a) as ‘‘non-
local’’ knotting (a knotted subarc is drawn with a solid line in
Fig. 1(c)); while that in Fig. 1(b) is ‘‘local’’ (a knotted subarc is
drawn with a solid line in Fig. 1(d)). Using this latter measure,
our results indicate that non-local knotting is more likely than
local knotting in a tube. This suggests that the likelihood of
non-local knotting in other restricted spaces, like spheres, will
be dependent on the definition chosen for knot-size.

We note that an existing model of DNA in a nanochannel
(Micheletti and Orlandini3) considers DNA in a salt solution; a
corresponding lattice model would include long-range interactions
to take into account screened Coulomb interactions such as in
Tesi et al.9 Including such long range interactions increases the
complexity of the model and makes it less tractable to both
theoretical and numerical analysis. Hence, as a first step, we explore
here a model where we can study a range of more tractable
scenarios which include the good solvent regime as well as the
fully compressed regime. Because of this, we do not make a direct
connection to DNA experiments. However, we do argue that the
tube sizes for which we have numerical results correspond to tube
dimensions within the 10–40 nm range and where the polymers are
well below the de Gennes scaling region identified in Micheletti
and Orlandini.3

The remainder of this paper is organised as follows. In
Section 2 we present definitions of the models under consid-
eration. In Section 3, definitions for two measures of knot size
and our classification scheme for knotted patterns are given.
After that, we present exact and numerical results about the
models. Then we present our theoretical results (outlines of
proofs are given in the ESI†) and the methods used. In Section 6
we briefly discuss some other models of confined DNA and
contrast and compare with the models studied here.

2 The models

We will use a general model for polygons in lattice tubes
subject to an external force which has been studied previously;
the notation and definitions used here (unless stated other-
wise) are as in ref. 10.

For non-negative integers L, M, let TL,M � T C Z3 be the
semi-infinite L � M tube on the cubic lattice defined by

T = {(x,y,z) A Z3 : x Z 0, 0 r y r L, 0 r z r M}.

Define PT to be the set of self-avoiding polygons in T which
occupy at least one vertex in the plane x = 0, and let PT,n be the
subset of PT comprising polygons with n edges (n even). Then
let pT,n = |PT,n|.

We define the span s(p) of a polygon p A PT to be the
maximal x-coordinate reached by any of its vertices and we use
|p| to denote the number of edges in p. See Fig. 2(a) for a
polygon p that fits in a 2 � 1 tube with s(p) = 6 and |p| = 36. To
model a force acting parallel to the x-axis, we associate a
fugacity (Boltzmann weight) e fs(p) with each polygon p. Let
pT,n(s) be the number of polygons in PT,n with span s. Then
the ‘‘fixed-edge’’ model partition function is given by

ZT;nð f Þ ¼
X

jpj¼n
e fsðpÞ ¼

X

s

pT;nðsÞe fs:

Thus f { 0 corresponds to the ‘‘compressed’’ regime while
f c 0 corresponds to the ‘‘stretched’’ regime. For this model,
the probability of a polygon p A PT,n is given by

Pðed; f Þn ðpÞ ¼ e fsðpÞ

ZT;nð f Þ
:

Fig. 1 Illustrations of (a) a non-local trefoil and (b) a local trefoil, with
knotted subarcs drawn with solid lines in (c) and (d); open chains with (e) a
non-local trefoil component and (f) a local trefoil component.
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The (limiting) free energy per edge of polygons in T is
defined as

FTð f Þ ¼ lim
n!1

1

n
logZT;nð f Þ:

This is known11 to exist for all f.
For f = 0, it has been proved that12,13

FTð0Þ ¼ lim
n!1

n�1 log pT;n

o lim
n!1

n�1 log cT;n

o lim
n!1

n�1 log pn

¼ lim
n!1

n�1 log cn � k � logm;

(1)

where cn is the number of n-step self-avoiding walks (SAWs) in
Z3 starting at the origin and k is their connective constant, and
cT,n is the number of these confined to T.

A subset of self-avoiding polygons in T are Hamiltonian
polygons: those which occupy every vertex in a s� L�M subtube
of T. These serve as an idealised model of tightly packed ring
polymers, in addition to being a useful lower bound for general
polygons in the f o 0 compressed regime. We define the number
of Hamiltonian polygons, pH

T,n, to be the number of n-edge
polygons in PT,n which have span s and occupy every vertex in

an s � L � M subtube of T. We define W = (L + 1)(M + 1) (the
number of vertices in an integer plane x = i Z 0 of the tube)
and will assume without loss of generality that L Z M; note that
pH

T,n = 0 if n is not a multiple of W. The following limit has been
proved to exist by Beaton et al.10 (see also Eng14):

kHT � lim
s!1

1

ðsþ 1ÞW log pHT;ðsþ1ÞW :

Furthermore, using this, FT( f ), the free energy per edge, is
bounded as follows:

max{ f/2, ( f/W) + kH
T} r FT( f ) r max{ f/W, f/2} + FT(0), (2)

with FT( f ) asymptotic to the lower bound for f -N for any T,
and for f - �N for small tube sizes (this is conjectured to be
true for any T), see Beaton et al.10

Here, we will also be interested in the dual model, called the
‘‘fixed-span’’ model, with partition function given by

QT;sðgÞ ¼
X

n

pT;nðsÞegn:

For this partition function, when g c 0 densely packed (in terms
of number of edges per span) polygons dominate the partition
function, while when g { 0 polygons with very few edges per
span dominate. For this model, the probability associated with a
span s polygon p is given by

Pðsp;gÞs ðpÞ ¼ egjpj

QT;sðgÞ

and the associated (limiting) free energy per span exists10 (see
also ref. 15):

GTðgÞ ¼ lim
s!1

1

s
logQT;sðgÞ:

Both models correspond to special cases of the grand
canonical partition function

GTð f ; gÞ ¼
X

s

X

n

pT;nðsÞegnþfs

and can be studied using transfer matrix methods.15

Hamiltonian polygons can also be studied using transfer
matrices10,14 and we will also be interested in the fixed-span
model where polygons are restricted to being Hamiltonian and
the probability associated with a span s Hamiltonian polygon p
is given by

PðHÞs ðpÞ ¼
1

pH
T;ðsþ1ÞW

:

3 Characterising local knotting and
classifying knotted patterns

Given a polygon of prime knot-type K, one standard approach
for measuring the ‘‘size’’ of the knotted part in the polygon is to
find a minimal length sub-walk of the polygon which has knot
type K, and then define the size of the knot to be the length of
this sub-walk. This of course requires a method for assigning a

Fig. 2 (a) A 36-edge polygon p that fits inside TL,M with L Z 2 and M Z 1;
the tube extends without bound to the right and the span s(p) = 6. Blue
vertices and edges denote a hinge of p, and green edges denote a section
of p. (b) The locations of the two pairs of vertical red lines indicate the
locations of the two 2-sections in this polygon; in this example, the
polygon can be decomposed into a start unknot pattern, a proper trefoil
knot pattern, and an end unknot pattern. The proper knot pattern is
classified as non-local in this case. (c) A local proper knot pattern in the
same tube with span 7.
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knot-type to an open chain; there are various ways to do so (see
ref. 7 and 16 for reviews). If K is composite, then one can use a
similar approach for each of the components. We refer to this
measurement of knot-size as arclength knot-size.

Motivated by the arclength knot-size definition, in this
section we introduce an approach for classifying the knotted
parts of polygons in T as either ‘‘local’’ or ‘‘non-local’’. We will
also introduce another measure for knot-size which is particularly
suited to polygons in narrow tubes. References will be made to
Fig. 2 for illustration.

Let p be a polygon in T with span s. Thus p is embedded in T

between the planes x = 0 and x = s. For half-integers k 2 Zþ 1
2

with 0 o k o s, we say that p has a 2-section at x = k if the plane
x = k intersects p at exactly two points. (Equivalently, p has
exactly two edges in the x-direction between x ¼ k� 1

2
and

x ¼ kþ 1
2
.) See Fig. 2(b) where k = 1/2 or k = 11/2. If p has m

2-sections, let t(p) = (t1,. . .,tm) be the (ordered) set of x-values at
which they occur. Clearly m r s; if m = 0 then t(p) is empty.

The 2-sections of a polygon p in T naturally partition it into a
sequence of ‘‘segments’’. Moreover, if p has prime knot-type,
then typically the segment of p which contains the ‘‘knotted
part’’ will lie between two successive 2-sections. See for exam-
ples Fig. 2(b) and (c) for polygons with trefoil knot-type. It is
this idea which will allow us to locate, measure and classify
knot components within polygons in T.

Take p in T with m Z 2. The 2-sections of p partition it into
a sequence of segments that we call connect-sum patterns
(cs-patterns for short). Then for any 1 r i o m, the segment
of p between x = ti and x = ti+1 is called a proper cs-pattern of p.
If m Z 1 then the segment of p between x = 0 and x = t1 is called
the start cs-pattern of p; likewise, the segment of p between
x = tm and x = s(p) is called the end cs-pattern of p. See Fig. 2(b)
and (c) for examples with m = 2. Note that proper, start and end
cs-patterns are examples of, respectively, proper, left-most and
right-most patterns as defined in ref. 10. Here we define the
span of a (resp. start, end) cs-pattern to be ti+1 � ti + 1 (resp.
t1 þ 1

2
, sðpÞ � tm þ 1

2
).

Any proper cs-pattern s (between x = ti and x = ti+1, for some
i Z 1) is the union of two ‘‘strands’’ (self-avoiding walks) s1 and
s2, each extending from the left end of the pattern to the right.
On the left side of the plane x = ti, joining the two left ends of s1

and s2 to each other and then, on the right side of the plane
x = ti+1, joining their two right ends to each other, yields what
we call the denominator closure of the cs-pattern. See Fig. 3(a).
Note here that if the overall polygon has knot-type K and one of its
proper cs-patterns has denominator closure of knot-type K0, then K0

must be part of the knot-decomposition of K. Let DC(s) be the knot-
type of the denominator closure of s. If DC(s) a 01 (the unknot),
then we say that s is a knot pattern with knot-type DC(s).

Alternatively, the two endpoints of s1 (resp. s2) can be
reconnected to each other (outside of T) to form a (possibly
separable) link. We call this the numerator closure of s. See
Fig. 3(b). Here we are not interested in the overall link-type of
the numerator closure; we instead only care about the knot-
types of its two components. Let NC1(s) (resp. NC2(s)) be the
knot-type of the closure of s1 (resp. s2).

We are now prepared to give our definitions of local and
non-local knot patterns. Let s be a cs-pattern of a polygon.
If s is a proper pattern with DC(s) = K a 01 but such that
NC1(s) a K#K0 and NC2(s) a K#K00 for any K0 or K00 (i.e. K is not in
the knot decomposition of either NC1(s) or NC2(s)), then the knot
K cannot be discovered by examining only one of the strands of s.
In this case both strands are needed to detect K and hence since
the two strands of s could potentially be far apart along the
contour of the entire polygon, we define s to be a non-local knot
pattern. For example, the denominator closure in Fig. 3(a) is a
51 knot while the components of the numerator closure in
Fig. 3(b) are a trefoil and an unknot; the corresponding proper
cs-pattern is therefore a non-local knot pattern. For all other
cases we classify s as a local knot pattern. Note that there
are examples of cs-patterns which we classify here as ‘‘local’’
which might be more appropriately classified as ‘‘non-local’’

Fig. 3 (a) An illustration of the denominator closure of a proper cs-pattern s.
The blue strand corresponds to s1 and the red to s2 and their union is
proper cs-pattern s. The denominator closure is obtained by adding the
black arcs and yields a closed curve with knot-type 51, i.e. DC(s) = 51. (b) The
numerator closure of the same pattern. The numerator closure gives a link
with one component a 31 (a51) knot and the other an unknot (01 a 51);
hence this is a non-local knot pattern. Here NC1(s) = 01 and NC2(s) = 31.
(c) A local trefoil knot pattern that can occur in a Hamiltonian polygon.
(d) A non-local trefoil knot pattern that can occur in a Hamiltonian polygon.
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(see Fig. 4 and the related discussion below), however, for small
tube sizes such cs-patterns have a relatively low probability
of occurrence.

The decomposition of polygons into cs-patterns leads to a
second measure for knot-size in a polygon as follows. A polygon
with prime knot-type K has at most one knot pattern (either local or
non-local). If it has a knot pattern, then we define its connect-sum
knot-size to be the number of edges in the knot pattern. If there is
no knot pattern in the polygon, then the length of the whole
polygon is used. A similar approach can be used for a composite
knot K, where we use the number of edges in each (if any) knot
pattern to determine a total connect-sum knot-size.

In this section we have defined a classification scheme for
local knot patterns that is relatively simple to implement for
polygons in tubes, however, this classification is not necessarily
consistent with the topological definition of local knot. In
particular, a topologically precise approach to defining a local
knot pattern is as follows. For a given knot pattern, if we can
find a 2-sphere that intersects the pattern in exactly two points
and such that it surrounds a knotted arc, then the knot pattern
contains a local knot. The right side of Fig. 4 shows an example
of a knot pattern with such a 2-sphere. However, by our
classification scheme, the left side of Fig. 4 shows an example
of a knot pattern s which we are currently classifying as a local
knot pattern even though there is no 2-sphere satisfying the
property just described. In particular, DC(s) = NC1(s) = NC2(s) = 31,
however, there is no 2-sphere that isolates (by surrounding it at the
exclusion of anything else) either of these trefoils and intersects the
pattern in only two points.

Because the number of edges needed to create patterns such
as that shown in Fig. 4 (left) is large, such patterns are not very
likely to occur and we do not believe that their existence will
affect our conclusions.

In the next section we explore numerically the occurrence
probabilities associated with local and non-local cs-patterns for
small tube sizes and specific knot-types and we provide evidence
that non-local knot patterns are more probable than local ones.
However, even though a polygon p with knot-type K a 01 contains a
knot pattern of a given type (local or non-local), this does not
necessarily guarantee that the polygon is locally or non-locally
knotted (using the standard arclength classification); this aspect
is explored more thoroughly and theoretically in Section 5.

4 Exact and simulation results

Exact generation was used to determine all smallest-span non-
local and local trefoil knot patterns in the 2� 1 and 3� 1 tubes.

(See Fig. 2 for examples of such patterns in the 2 � 1 tube and
Fig. 3 in the 3 � 1 tube.) Counts are shown in Table 1. In all
cases the number of non-local knot patterns greatly exceeds the
number of local knot patterns, suggesting that non-local trefoil
knot patterns may be more likely to occur than local ones. To
explore whether this conclusion depends on the model used
(fixed-edge or fixed-span), limiting probabilities of occurrence
of each type of pattern were determined under each of the
distributions P(ed, f )

n (�No f oN, n -N) and P(sp,g)
s (�No

g o N, s - N). These limiting probabilities can be deter-
mined (see for example Eng14) from the eigenvalues and
eigenvectors of the transfer-matrix. Fig. 5 shows the results
for the 3 � 1 tube. In this figure, for the fixed-edge model

(P(ed, f )
n ), P

ed;L
31
ð f Þ denotes the limiting (n - N) probability of

occurrence of a smallest local trefoil knot pattern at a section of a

polygon and P
ed;NL
31
ð f Þ denotes the corresponding probability for

the non-local patterns. Similarly, for the fixed-span model (P(sp,g)
s ),

P
sp;L
31
ðgÞ denotes the limiting (s -N) probability of occurrence of

a smallest local trefoil knot pattern at a section of a polygon and

P
sp;NL
31
ðgÞ denotes the corresponding probability for the non-local

patterns. Further note that Fig. 5 shows the results for the fixed-
edge probabilities with the horizontal axis corresponding to f while
for the fixed-span probabilities it corresponds to �g. The latter was
done to make an easier comparison between the models, since
positive values of f and negative values of g both have a stretching
effect on polygons. Although not shown here, the observed trends
were similar for the 2 � 1 tube. The results are summarised below.

Fig. 4 Two examples of local knot patterns. The right one has a red
2-sphere intersecting the pattern in two points and surrounding a local knot.

Table 1 Numbers of trefoil patterns of smallest spans in the 2� 1 and 3� 1
tubes, for all and Hamiltonian (Ham.) polygons

Tube size Span Non-local Local Ham. non-local Ham. local

2 � 1 6 116 0 32 0
7 5584 304 668 80
8 141 292 14 932 8020 1388

3 � 1 4 1964 0 232 0
5 762 984 29 272 17 568 1448

Fig. 5 log scale plot of the probabilities of the smallest local and non-
local trefoil patterns in the 3 � 1 tube, as functions of f (blue) and �g (red).
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Result 1. For T2,1 and T3,1, the limiting occurrence probability of
the smallest-span non-local trefoil knot patterns is greater than that
for the smallest-span local trefoil knot patterns, regardless of the
strength of the force f or the edge density weight g.

Determining the knot-type of a polygon or a knot pattern
requires the whole polygon or knot pattern. However, since the
numbers of polygons and knot patterns in a tube grow expo-
nentially with either span or the number of edges, we limited
the exact generation analysis to the case of the smallest trefoil
patterns. To explore further whether the trend observed for the
smallest trefoil patterns holds for other knots, a Monte Carlo
approach was developed to generate random polygons in the
tube, based on a method of Alm and Janson.17 The Monte Carlo
method is also based on transfer-matrices and can be used to
generate a set of independent and identically distributed poly-
gons from any of the distributions {P(ed, f )

n ,P(sp,g)
s } provided that

the transfer-matrix associated with GT( f,g) is known. Details of
the approach will be published elsewhere.

Based on the exact results of Fig. 5, we focused on the fixed-
span model at g = 0 where the probabilities of the smallest
trefoil patterns were greatest (compared to the other models).
Similarly we focus on the 3 � 1 tube, since knots are far more
common than in 2 � 1 while the transfer matrices are small
enough as to make simulations and enumerations reasonably
efficient.

For the Monte Carlo results, we begin by investigating the
probabilities of some simple knots. In Fig. 6 we plot the
probabilities of local and non-local trefoils in the fixed-span
ensemble, for both Hamiltonian and all polygons. Specifically
we plot Ps(K

NL) and Ps(K
L) which are respectively the observed

proportions of span s polygons which have knot-type K = 31 and
contain a non-local (NL) or local (L) knot pattern. We also plot
the corresponding observed proportions of span s Hamiltonian
polygons: P(H)

s (KNL), P(H)
s (KL). The corresponding data for figure-

eight knots (K = 41) is illustrated in Fig. 7. The relative
frequencies of non-local knots for trefoils (31), figure-eight
knots (41), 51 and 52 knots are illustrated in Fig. 8. For example,
the relative frequency of non-local trefoil knots amongst span s
trefoil polygons is Ps(3

NL
1 |31) = Ps(3

NL
1 )/Ps(31). Although not

shown, similar trends were observed for the 2 � 1 tube. Our
observations lead to the following conclusion.

Result 2. For T2,1 and T3,1, based on i.i.d. samples from the
limiting distribution of P(sp,0)

s over a range of spans s (10 million
polygons per span), we observe that the probability of occurrence
of a non-local 31, 41, 51 or 52 knot pattern is significantly greater
than that of the corresponding local knot pattern (e.g. Fig. 6
(bottom) and Fig. 7 (bottom)). The same holds for Hamiltonian
polygons sampled from the limiting distribution of P(H)

s (e.g.
Fig. 6 (top) and Fig. 7 (top)). Furthermore, for sufficiently long
polygons in T3,1, for each of these knot-types the proportion of
non-local patterns amongst all observed knot patterns of that
type is greater than 85% (see Fig. 8).

Next, we consider the average span of knot patterns within
polygons. Recall that we define the span of a knot pattern to
include the two 2-sections which bound it on the left and right.
In Fig. 9 we plot the average span of non-local and local trefoil

and figure-eight knot patterns, for both Hamiltonian and all
polygons sampled uniformly from the fixed-span ensemble.
Although not shown, similar trends were observed for the
2 � 1 tube. Our observations lead to the following conclusion.

Result 3. For T2,1 and T3,1, based on i.i.d. samples from the
limiting distribution of P(sp,0)

s over a range of spans s (10 million
polygons per span), we observe that the average spans of non-
local 31, 41, 51, and 52 knot patterns are smaller than those of the
corresponding local knot patterns (e.g. Fig. 9 (bottom)). The
same holds for Hamiltonian polygons sampled from the limiting
distribution of P(H)

s (e.g. Fig. 9 (top)).
The results of this section provide strong numerical evi-

dence that at least for small tube sizes, non-local knot patterns
are more likely and have on average shorter span than local
knot patterns. In the next section we discuss to what extent
results related to this can be proved.

5 Theoretical results

In this section we state results that can be proved related to
the occurrence of non-local and local knot patterns in tubes.

Fig. 6 Plots of the probabilities of non-local (red) and local (blue) trefoil knots,
for Hamiltonian (above) and all (below) polygons in the 3 � 1 tube, sampled
uniformly from the fixed-span ensemble (g = 0). The horizontal axis is span s.
The (barely visible) error bars represent 95% confidence intervals.
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We focus on the statement of the results and leave most details
of any proofs to the ESI.† First we present results related to
which knot patterns can occur in a tube of a given size and what
is known about the minimum span of such knot patterns. Then
we present results on the probability of occurrence of knot
patterns.

Because of the strict geometric confinement, not all knots
are embeddable in a given T; the dimensions of the tube
determine whether a particular knot is embeddable.18 We
present here a general statement; a more precise (but technical)
version is stated and proved in the ESI.†

Result 4. For any given knot type K, K admits a proper non-
local knot pattern in a tube TL,M for L, M sufficiently large, and
admits a proper local knot pattern in a tube TL0,M0 for L0, M0

sufficiently large. Any tube T which accommodates a local knot
pattern for K also accommodates a non-local knot pattern.

Note that this result leaves open the possibility that for a
given knot K with a non-local knot pattern in TL,M there might
not be an associated local knot pattern in TL,M. For the case of a
2 � 1 tube, however, we establish a more definitive result –
namely, if the knot is embeddable in the tube then there also
exist both non-local and local knot patterns for the knot in the

tube. Fig. 2(a) shows a trefoil polygon in a 2 � 1 tube that yields
a non-local knot pattern (see Fig. 2(b)). Fig. 2(c) shows a local
knot pattern in the same tube; note that the span of this local
knot pattern is one greater than that shown in Fig. 2(b). For the
2 � 1 tube, the arguments used by Ishihara et al.18 can also be
extended to prove that this difference in span holds for the
smallest knot patterns of knots with up to 5 crossings. In
summary the following result can be proved.

Result 5. Given a prime knot K a 01 that can occur in a 2 � 1
tube, there exists at least one proper local knot pattern and at
least one proper non-local knot pattern. Furthermore, at least
for K A {31,41,51,52}, the span of a smallest proper local knot
pattern of K in T2,1 is greater than that of a smallest proper non-
local knot pattern of K in T2,1.

For the 3 � 1 tube any knot that can occur in T2,1 will also
have non-local and local knot patterns; see Fig. 3 for some
examples. We note that for the 3 � 1 tube, by an exhaustive
search, we have determined that the span of a smallest local
knot pattern of 31 is also one greater than that of a smallest
proper non-local knot pattern of 31 (Fig. 3(c) and (d) are
examples of such smallest knot patterns for Hamiltonian

Fig. 7 Plots of the probabilities of non-local (red) and local (blue) figure-
eight knots, for Hamiltonian (above) and all (below) polygons in the 3 � 1
tube, sampled uniformly from the fixed-span ensemble (g = 0). The
horizontal axis is span s. Error bars represent 95% confidence intervals.

Fig. 8 Relative frequencies of non-local knots for trefoils (red), figure-
eight knots (blue), 51 knots (purple) and 52 knots (green), for Hamiltonian
(above) and all (below) polygons in the 3 � 1 tube, sampled uniformly from
the fixed-span ensemble. Note that the lines joining the points in the
second plot have been added only to aid the reader, and do not indicate
any additional data.
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polygons in the 3 � 1 tube). We also looked at the smallest
prime knots which cannot occur in T2,1 but can in T3,1:
85,810,815–821. For all these knots, it is possible to construct a
local pattern.

The fact that the span of smallest non-local knot patterns is
smaller than that of local knot patterns provides a partial
explanation for Result 3, that the average span of a non-local
knot pattern is smaller than that of a corresponding local knot
pattern for small tube sizes. However, for a large enough tube
size, the span of smallest non-local and local knot patterns are
expected to be the same; see Fig. 10 which shows, on the left, a
shortest trefoil arc which is part of a span-3 local trefoil knot
pattern within T3,3, and shows on the right a smallest non-local
trefoil knot pattern in T3,3 also having span 3. Note, however,
for this case the number of edges in the local knot pattern is
greater than that for the non-local pattern; this may lead to
non-local trefoil patterns being more likely to occur than local
ones even in larger tube sizes, i.e. that Result 2 could continue
to hold.

We next discuss some results about the likelihood of each
type of pattern.

There are known ‘‘pattern theorems’’ available for both
the fixed-edge and fixed-span models studied here (see ref. 11
and 15), as well as for Hamiltonian polygons (see ref. 14). The
theorems focus on proper polygon patterns (see ref. 10 for more
precise definitions) which include the proper knot patterns
defined here. Given a model and a proper pattern P which can
occur in a polygon of the model in T, a pattern theorem
establishes that there exists an eP 4 0 such that, for n
sufficiently large, all but exponentially few n-edge polygons
contain more than ePn copies of P. From such theorems it is
known that the knot-complexity of polygons grows as polygon
‘‘size’’ grows (size could be measured in terms of edges or
span), so that a typical polygon will have a highly-composite
knot-type K = K1#K2#. . .#Kr.

19 Different prime components of
the knot could occur as knot patterns in the polygon in a variety
of ways. Our interest here is to investigate how often they are
occurring as ‘‘local’’ knots versus non-locally.

To define ‘‘local’’ knotting requires the definition of a knot-
size measure (we have given two possible measures: arclength
and connect-sum knot-size) but also a comparison of knot-size to
polygon size. Here we consider that a polygon’s size m is growing
without bound and say that it is non-locally knotted with
respect to arclength knot-size if at least one of the knots Ki in
its prime knot decomposition has arclength knot-size aKi

= O(m).
In this case we say Ki occurs non-locally in the polygon or is non-
locally knotted, and otherwise we say that Ki occurs locally or is
locally knotted. Thus a polygon can be both non-locally and locally
knotted (with respect to arclength knot-size) depending on
the occurrence of each of its prime components. Corresponding
definitions can apply to the case of the connect-sum knot-size.
However, to distinguish this case, we say a polygon is ‘‘loosely’’
knotted (or contains a loose knot) if at least one of the knots Ki in its
prime knot decomposition has connect-sum size bKi

= O(m); other-
wise, we say Ki occurs as a tight knot or tightly. See Fig. 11.

Fig. 9 Average span of non-local trefoil (red), local trefoil (blue), non-
local figure-eight (purple) and local figure-eight (green) knot components
versus overall polygon span, for Hamiltonian (above) and all (below)
polygons in the 3 � 1 tube, sampled uniformly from the fixed-span
ensemble.

Fig. 10 The shortest local (left) and non-local (right) knot patterns. Both
fit in T3,3.

Fig. 11 A schematic of the non-local trefoil pattern from Fig. 10 in a
polygon. This knot is tight (because the connect-sum size C is small) but
non-local (because the arclength size A is large).
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To explain these definitions more clearly, consider the non-
local trefoil pattern P of Fig. 2(b). If this pattern occurs in a
trefoil polygon p, then p must be formed from a connect sum of
unknotted polygons with P. Suppose the size of p c the span
of P. If P occurs near the left end (or right end) of p, then the
arclength knot-size will be short compared to the size of p and
even though we have classified P as a non-local knot pattern,
we will say that P has occurred in a ‘‘local’’ way in p and that p
is locally knotted. If instead P occurs in the ‘‘middle’’ of p
(i.e. half-way along the span) then we will say that P has
occurred in a ‘‘non-local’’ way in p and that p is non-locally
knotted (since the arclength size of the knot is proportional to
the size of p). In contrast, because the connect-sum knot-size of
P is small compared to the size of p, no matter where it occurs
in p we will say that 31 occurs as a tight knot. On the other
hand, for the local trefoil pattern of Fig. 2(c), no matter where it
occurs in a very large sized trefoil polygon p, it will always have
a small arclength knot-size as well as a small connect-sum knot-
size and hence p will be considered to be both locally and
tightly knotted.

Since the pattern theorems hold for proper knot patterns,
they tell us that for each of the models in question, any proper
knot pattern which can occur in a polygon (or Hamiltonian
polygon) will occur with a positive density as polygon size grows
(where, depending on the model, size is measured by edges or
by span). In particular for any T, polygons which contain no
knot patterns are exponentially rare. Furthermore we have, by
considering the local trefoil knot pattern of Fig. 2(c) (or an
inflated version for the Hamiltonian polygon cases), the following
result.

Result 6. All but exponentially few sufficiently long polygons
in T with M Z L Z 2 or M Z 2, L = 1 for any of the three models
(fixed-length, fixed-span and Hamiltonian) are both locally and
tightly knotted.

Note that this does not preclude the same polygons from being
non-locally or loosely knotted – we only know that the knot-types of
the polygons are highly complex and that some of the knots in the
knot decomposition will be local trefoil knot patterns as in Fig. 2(c).

Applying the above argument to proper non-local knot
patterns also leads to the following.

Result 7. All but exponentially few sufficiently long polygons
in T with M Z L Z 2 or M Z 2, L = 1 are non-locally knotted.

Meanwhile for self-avoiding walks in T, at least for f = 0, the
scenario depicted in Fig. 1(e), in which a non-local knot pattern
occurs in a walk in a non-local way, is exponentially rare. To see
this, first note that any polygon can be turned into a walk by
removing one edge. Thus from (1) for f = 0, we know that
polygons are exponentially rare in the set of walks. Next con-
sider the subset of n-step walks in T which contain a non-local
knot-type K pattern at a location in the walk such that the
arclength of K is an for some a 4 0 (as in Fig. 1(e)). Each such
walk can be decomposed into a polygon with at least an edges
(and having K in its knot-decomposition) and a walk with
length at most (1 � a)n. Thus this subset of walks will have
an exponential growth rate which is strictly less than all walks
in T. This gives the following result.

Result 8. Self-avoiding walks which contain a non-local knot
pattern in a non-local way are exponentially rare in the set of all
walks in T.

(Note that this result does not contradict the pattern theorem
for walks in T proved by Soteros and Whittington13 because the
proper knot patterns defined here are not examples of proper
walk patterns.)

6 Practical implications and DNA
models

In this section we will briefly discuss the connections between
this work and other models of confined DNA. Before proceeding,
we again reiterate that for simplicity our model does not account
for any longer-range electrostatic interactions.

6.1 Tube dimensions

Self-avoiding polygons on Z3 have a natural ring structure, but
when confined to a tube of diameter much smaller than the
polygon length, they become essentially linear objects. It is thus
natural to look at how correlations decay along the length of the
tube; and since our Monte Carlo sampling method constructs
polygons one cs-pattern at a time using a transfer matrix, it is
also straightforward to study this.

For the fixed-span model, we have measured the number of
edges in a section as well as the centre of mass of those edges,
and looked at how these quantities correlate in two sections
separated by distance s (within a long polygon). The centre of
mass has slightly stronger correlations, but still very weak: the
correlation between two adjacent sections is r E �0.061, and
this decays exponentially for s 4 1. By adapting a formula for
the autocorrelation time of a stationary Markov chain,20 we
obtain an estimate for the ‘‘correlation span’’ along the length
of the tube: sc E 1.12. For Hamiltonian polygons, a similar
analysis leads to sc E 1.66. Now the average density of a
polygon in the 3� 1 tube is about 2.05 edges per strand per unit
span,14 while for Hamiltonian polygons it is exactly 4. We thus
get the rough ‘‘correlation lengths’’ cc E 2.31 and cc E 6.63
respectively.

We take the ‘‘diameter’’ of the 3� 1 tube to be D ¼
ffiffiffi
3
p
¼ 1:732.

Since double-stranded DNA has a persistence length of about
50 nm,21 we arrive at the estimate that D roughly corresponds to
the range 10–40 nm, so that D/cc o 1. In Micheletti and Orlandini3

evidence is provided that, at least for high salt solutions, there is a
crossover from the Odijk scaling region (where D/cc o 1) to the de
Gennes scaling regime at channel widths of about 85 nm. Our
model results for small tube sizes are consistent with a scaling
regime that is well below the de Gennes scaling regime.

6.2 Other models

Micheletti and Orlandini3 model DNA in a nanochannel using a
semi-flexible chain of cylinders (with parameters chosen to
match those of double stranded DNA in concentrated solutions
of monovalent salts) and confine the chain to cylindrical
channels of various widths. They present numerical results
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on knotting probabilities as a function of chain length and
channel width. They also explore the size of knots using an
arclength measure; Fig. 4(c)–(f) in that paper show results for
the average lengths and the distribution of lengths of trefoil
knots in linear and circular chains as functions of total chain
length as well as the effective nanochannel diameter. Consider-
ing Fig. 4(c) from that paper and focussing on the smallest
effective diameter, it can be seen that for linear DNA the
average trefoil arclength is relatively independent of total chain
length for sufficiently large linear DNA; this is consistent with
trefoils occurring as local knots (as predicted in our Result 8).
In contrast, considering Fig. 4(d) from that paper and again
focussing on the smallest effective diameter, it can be seen that
for circular DNA the average trefoil arclength is on the order of
1/4 total chain length; this is consistent with the trefoil occur-
ring as a small non-local knot pattern randomly distributed
through the chain (consistent with our result that non-local
knot patterns are more likely than local knot patterns in
polygons). To make better comparisons between these two
models, however, it would be necessary to include more DNA-
like interactions into our lattice model as well as to explore
larger tube sizes.

Our definitions of local and non-local knot patterns corre-
spond very closely with a recent numerical study by Suma
and Micheletti.6 In that work, the translocation of knotted
10 kbp DNA rings through a nanopore of diameter 10 nm was
simulated. The authors found two different modes of knot
translocation, which they called single- and double-filament
(see Fig. 4(C) and (D)6). These correspond to our definitions
of local and non-local knot patterns respectively. For that (non-
equilibrium) model, the relative frequencies of these modes
(measured as the knot passes through the pore) depended on
the length of the DNA molecule and the initial conditions prior to
translocation. However, it was observed that the translocation time
for both single- and double-filament knots was about the same,
and thus this cannot be used as a method for distinguishing the
two modes. There are many differences between the model
presented here and that in Suma and Micheletti,6 and we do
not attempt to make a quantitative comparison. We expect,
however, that the mathematical framework developed here for
classifying these two types of knot modes will prove useful for
further analysis of these models.

6.3 DNA experiments

Our results are also connected to recent experimental work,5

which demonstrated that knots in DNA can be detected by
passing the molecule through a nanopore and observing when
and for how long the pore is obstructed. While both local and
non-local knot patterns can be detected, as observed in ref. 6, it
does not seem possible to distinguish the two modes of
knotting using this method, as the obstruction events take
about the same time to occur. On the other hand, if it were
possible to measure the arclength of the knot as well as the
translocation time, then our results would suggest that those knots
with an arclength which is inconsistently long, in comparison to

the translocation time, could be classified as occurring in the
double-filament mode (i.e. occurring as a non-local knot pattern).

The biological relevance of these results is presently unclear.
The nature of a knot in a DNA molecule is biologically important,
as it can have an effect on DNA replication or the effectiveness of
enzymes like topoisomerase in untangling the knot. Whether
local or non-local knot patterns can be more easily untangled is
an open question, and one we intend to study further.

We also mention some experimental work on stretched DNA
knots.22,23 In those cases the authors studied linear DNA, and
observed knots in stretched molecules by microscopy techniques.
It is unclear whether or not, or how, one could distinguish
between the two knotting modes in any corresponding experi-
ments for circular DNA.

6.4 Linking in polymers

In this work we considered only a single polygon or walk
confined to a lattice tube, as a model of a single confined
polymer. The topological properties of multiple molecules, like
linear or circular DNA molecules or melts of rings, are also
important in biological and physical systems. Methods for
detecting and quantifying linking of long polymer chains have
been developed, in both free solutions24 and in confinement.25

The methods employed here for detecting and classifying
knots in tubes can be adapted to links in tubes in a straightfor-
ward way. The ‘‘linked portion’’ of a pair of linked polygons can
be found by finding the 2-sections of the link and examining
the portions which lie between them; connecting up the loose
ends in different ways (similarly to Fig. 3) is expected to enable
the classification of different types of links. However, more
challenging is the case where each polygon in a linked pair
spans the same portion of the tube (i.e. there are no 2-sections
in the link). This latter model has been studied theoretically in
Atapour et al.26 and is being explored now by us numerically
using transfer-matrix and Monte Carlo methods to determine
the linking distribution as well as to explore the open question
of classifying link patterns.

7 Conclusion

We have used self-avoiding polygons to model ring polymers
confined to narrow tubes. For this model we have used a
standard approach for measuring the size of a knot to define
‘‘local’’ and ‘‘non-local’’ knotting.

We have then provided both theoretical and numerical
evidence that when ring polymers are confined to very narrow
tubes, at equilibrium and assuming all states are accessible, non-
local knotting is more likely than local knotting (Results 1–2). This
may be a consequence of the fact that non-local knot configura-
tions, at least for the simplest knots, are on average smaller than
their local counterparts (Result 3). In small tube sizes they are
smaller both in span and in edge count (Result 5).

These results can be compared and contrasted with recent
numerical models of DNA knots translocating through a
nanopore,6 and related experimental techniques for detecting
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knots.5 Such techniques do not appear to be sensitive enough
to distinguish between these two different modes of knotting.
However, being aware that two different modes are possible
and determining whether one is more probable or on average
tighter than the other, could lead to improved analysis of both
model and experimental results.

We also provided theoretical evidence that for linear chains,
non-local knotting is exponentially rare, due to the entropic
disadvantage of a long bend (Result 8). This is comparable to
what has been observed experimentally.5
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